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Abstract 
Vehicle impacts impose high strain-rate dynamic loads on reinforced concrete (RC) bridge piers, leading 
to complex material responses and an apparent strength increase, typically represented by the Dynamic 
Increase Factor (DIF). The initial collision often damages the concrete cover, redirecting load to the 
transverse reinforcement and altering the pier’s axial and flexural performance. This study presents a 
streamlined mathematical model that evaluates damage severity, estimates failure probability, and cal-
culates a reliability index for impacted piers. Compared to conventional probabilistic models, such as 
Normal, Log-normal, Weibull, Allen and Standardized Allen distributions, the proposed model yields 
slightly conservative but more consistent estimates of residual capacity, offering a more reliable assess-
ment of structural performance under uncertainty. Validation through uncertainty analysis reveals a 
small deviation of ±4.3%, supporting the model’s robustness. The results provide practical guidance for 
damage evaluation, re-strengthening strategies, and forensic investigations, making the model a relia-
ble and cost-effective tool for engineers assessing RC bridge pier serviceability and resilience after high 
velocity vehicle impact. 
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1. Introduction 

The growing volume and speed of vehicular traffic, 
along with the exposed and often vulnerable surfaces 
of reinforced concrete (RC) bridge piers, while particu-
larly on overpasses, have raised significant concerns 
regarding their crashworthiness and structural relia-
bility. Unlike seismic events, which have long influ-
enced bridge design codes and safety protocols, vehicle 
impacts have historically received less emphasis, de-
spite their proven risk. A comprehensive study of 
bridge failures from 1951 to 1988 revealed that ap-
proximately 53% were caused by impacts from heavy 
vehicles such as trucks, making vehicular collision the 
leading cause of bridge failure during that period, while 
earthquakes accounted for only about 1% [1]. In recent 
years, the rising frequency of high velocity vehicle col-
lisions with RC pier has led to severe bridge damage 
and even collapses, drawing increasing global concern 
[2]. This stark contrast highlights a major oversight in 
current design and assessment practices. RC piers are 
especially susceptible due to their geometric configura-
tion and exposed positioning, which increase the likeli-
hood and severity of impact-related damage [3, 4]. 
High-speed collisions can result in a range of damage, 

from superficial cracking and concrete spalling to se-
vere structural compromise or collapse. Alarmingly, 
many impacted piers remain in service without ade-
quate health monitoring or damage assessment, in-
creasing the risk of catastrophic failure if a secondary 
event, such as an earthquake takes place before repairs 
or reinforcements are made. This underscores the ur-
gent need for detailed structural evaluations that con-
sider sequential loading effects and the cumulative 
damage from multiple events. To ensure safe re-use or 
to determine the necessity of retrofitting or strength-
ening, comprehensive analyses must account for key 
factors such as pier geometry, material behavior, 
boundary conditions, and impact height, all of which 
exhibit inherent variability [5]. Given the complex in-
terplay of factors like material properties, geometry, 
boundary conditions, and impact height, a more nu-
anced understanding of how RC piers perform under 
sequential loading is essential. Insightful structural 
evaluations and data-driven decisions on repair or ret-
rofitting are needed to ensure long-term safety and re-
silience of bridge infrastructure in real-world impact 
scenarios. A deeper understanding of how RC bridge 
piers perform under these complex, real-world scenar-
ios is essential for improving bridge safety, longevity, 
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and resilience against both isolated and compound 
hazards. 
Recent studies have attempted to classify the servicea-
bility of damaged RC bridge piers based on the severity 
of vehicular impact, ranging from slight to extensive 
damage [6]. While these efforts provide useful initial 
insights, they highlight the need for a more in-depth 
understanding of crash severity as a critical factor in 
determining whether a damaged pier can remain in 
service. Existing literature primarily focuses on identi-
fying damage levels or enhancing structural survivabil-
ity under impact [7], with limited emphasis on the dy-
namic response of piers under varying conditions. 
Some research works have explored the influence of 
parameters such as pier geometry, vehicle speed, im-
pact mass, concrete compressive strength, and the ten-
sile strength of reinforcement steel on pier reliability 
[8]. Despite recognition of the importance of risk-based 
design, current codes still often rely on overly simpli-
fied static approaches to model impact loads from ve-
hicles, trains, or ships, frequently underestimating 
their effects for the sake of economic efficiency [9, 10]. 
To address these shortcomings, the present study in-
troduces a mathematical model that captures the fail-
ure response of RC piers under high-velocity impacts 
by incorporating a strain-rate-dependent damage in-
dex. This model is evaluated against existing statistical 
models and used to conduct a parametric study, leading 
to a regression-based framework for predicting failure 
and assessing reliability through an improved reliabil-
ity-based approach.  
The incepted model has been compared with the 
widely used statistical models estimating pier impair-
ment caused by high velocity semi-trailer impact. The 
shows its conservativeness whereas the statistical for-
malisms manifest close proximity that do not consider 
the uncertainty associated in estimating failure and 
corresponding reliability along with the sensitivity that 
warrants the structural resilience [11]. The model is 
further validated by uncertainty evaluation. This meth-
odology is crucial for accurately estimating the reduced 
strength of in-service piers and guiding decisions on re-
pair, retrofitting, or continued use. By addressing the 
performance of RC piers after impact and accounting 
for potential sequential hazards such as seismic events, 
this study aims to bridge existing knowledge gaps and 
support the development of more resilient and charac-
terizing reliable bridge infrastructure [12]. 
This study offers a comprehensive investigation into 
the post-impact performance and residual structural 
capacity of reinforced concrete (RC) bridge piers, fo-
cusing on their behavior following vehicular collisions. 
A newly developed probabilistic model is introduced 
and critically evaluated against existing models to vali-
date its predictive capability and practical applicability 
[13]. The aim is to establish a robust framework for as-
sessing post-impact performance that extends beyond 
immediate damage characterization to encompass re-
sidual load-bearing capacity, an essential factor in post-

event safety assessments and decision-making. The re-
search emphasizes structural resilience, particularly 
under sudden, dynamic loading conditions, where un-
derstanding damage propagation and capacity reten-
tion is crucial. 
The novelty of this study lies in the rigorous validation 
of the proposed model through a combination of sto-
chastic analysis and scaled experimental testing using 
half-size RC bridge pier prototypes. These specimens 
are carefully designed to simulate the dynamic and 
structural characteristics of full-scale piers while ena-
bling controlled observation of impact-induced behav-
ior. Key aspects of the model’s robustness are exam-
ined, including its ability to capture nonlinear damage 
progression, accurately correlate damage indices with 
residual strength, and predict failure probabilities un-
der varying conditions. By normalizing performance 
metrics and comparing them across models, the study 
also facilitates a nuanced understanding of model reli-
ability and trade-offs. Ultimately, this research contrib-
utes a standardized yet adaptable modeling framework 
capable of informing both design practice and post-im-
pact assessment in critical infrastructure systems. 
1) A detailed post impact performance of RC pier after 

experiencing high velocity single impact load and 
post impact pier performance in terms of reliability 
using various index methods. These indices are 
compared to come up with a cognitive and persua-
sive regression model to assess post impact perfor-
mance warranted by high strain rate loading. 

2) This study aims to develop a practical and compre-
hensive method for evaluating the severity of struc-
tural deterioration following an impact event and 
for accurately predicting the corresponding resid-
ual capacity of the structure. By focusing on the re-
duction in resilience caused by damage, the method 
seeks to provide a reliable assessment of a struc-
ture’s remaining strength and performance poten-
tial. This approach integrates damage characteriza-
tion with predictive modeling, offering a more in-
formed basis for decision-making in post-impact in-
spections, repairs, and continued use. 

3) This research study aims to facilitate detailed per-
formance analysis and accurately capture the ef-
fects of uncertainty parameters, thereby enhancing 
the design capacity and refining the definition of 
failure domains. It offers a valuable tool for forensic 
structural engineers, enabling more reliable health 
assessments and evaluation of residual capacity in 
structures subjected to high velocity impact. 

2. Vehicle impact load and failure of RC pier 

The exposed reinforced concrete bridge column when 
experiences a vehicular, small to highly loaded truck, 
impact due the high momentum followed by shock 
which leads to the adequate damage to that pier. Rein-
forcing steel bar being a homogeneous and isotropic 
material, dissipates high energy and withstand sub-
stantial impact ([14, 15], low velocity and resilience 
coupler). This leads very significant to determine DIF. 
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In this study, vehicle weight (M) and impact velocity 
(V) of the semi-trailer are considered as 42.11 kips. 
(187.30 kN) and 100 ft/sec (30.48 m/sec) respectively 
[14]. In addition, due to high velocity impact, its dam-
age is so detrimental that the bridge may undergo se-
vere damage to completely collapse. The bridge pier 
having impacted, experiences high frontal shock causes 
an irreparable collapse. Although, some impacted 
bridge piers are relatively less damaged, which in turn, 
can be restrengthened and retrofitted into service [15]. 

2.1 Computation of damage  

The load model used for the reliability analysis of a con-
crete pier subjected to vehicular impact is defined by 
the dynamic impact force exerted by the colliding vehi-
cle. This dynamic force (Idyn) is a function of the contact 
pressure (Ir) generated during impact, the geometric 
characteristics of the pier, and the duration of the im-
pact event, as described in Equations 1 through 3 [3, 9]. 
In this analysis, the pier is assumed to have fixed-fixed 
boundary conditions, restrained against both displace-
ment and rotation at the top and bottom ends, as illus-
trated in Figure 1. This configuration reflects a con-
servative assumption, capturing the most constrained 
response of the pier under short duration dynamic 
loading [11]. 

 

Figure 1 Impact location and geometry of RC bridge pier [11]. 
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where: Idyn represents the dynamic impact force (also 
known as frontal shock) generated during a collision, Ir 

denotes the peak reflected pressure or overpressure 
resulting from the impact, t represents duration of the 
impact event, E signifies amount of kinetic energy ab-
sorbed by the impacted pier during the collision, I be 
moment of inertia of the pier's cross-section, which in-
fluences its resistance to bending, L is unrestrained 
(unsupported) length of the pier, a is the vertical dis-
tance from the base of the pier to the point where the 
impact occurs, b is vertical distance from the top of the 
pier to the impact point, c is the perpendicular distance 
from the neutral axis of the pier’s cross-section to the 
farthest extreme fiber (often used in bending stress cal-
culations), M is termed as vehicle weight involved in 
the collision, and k represents the stiffness of the vehi-
cle’s front structure, which affects how the vehicle de-
forms upon impact as illustrated in Figure 2. 
Resistance models in reliability analyses are usually 
designed around material properties and geometric di-
mensions of the structural member under considera-
tion. For impact analysis, the primary resisting mecha-
nism of the pier is taken as its shear capacity.  
As suggested in AASHTO LRFD [16] the design shear 
capacity of the reinforced concrete (RC) pier is deter-
mined using Equations 4 through 8 [11]. 

𝑉𝑁,𝑑𝑒𝑠𝑖𝑔𝑛 = 𝑉𝑐 + 𝑉𝑠 (4) 

where: Vc is the shear strength carried by the concrete 
and Vs is the transverse shear capacity. 
The shear strength, Vc, is computed as shown in Equa-
tion 5 [17]. 

𝑉𝑐 =
6√𝑓𝑐

′

ŝ
𝐷

√1 +
𝑁𝑑𝑒𝑠𝑖𝑔𝑛

6√𝑓𝑐
′𝐴𝑔

(0.8𝐴𝑔) (5) 

where: Ag represents the gross cross-sectional area of 
the concrete in the pier, ŝ is the shear span, Ndesign is the 
design axial capacity of the pier and D is diameter of the 
pier cross-section.  
The design axial capacity, Ndesign can be computed using 
Equation 6 [18]. 

𝑁𝑑𝑒𝑠𝑖𝑔𝑛 = 0.85(𝑓𝑐
′) ∗ (𝐴𝑔 − 𝐴𝑠) + 𝜎𝑜 ∗ 𝐴𝑠 (6) 

where: fc’ is the 28-day compressive strength of con-
crete, fy is the first yield strength of main (longitudinal) 
reinforcing steel bar, σo indicates yield strength of rein-
forcing steel, and Ag and As represent the gross cross-
sectional area of concrete and total cross-sectional area 
of longitudinal steel, respectively. 
From the Equation 6, the design axial capacity of the 
pier has been determined as 1150 kips [4]. This is also 
furnished in Table 1. 
 

Table 1 Materials and Geometric Properties of the representative RC Pier. 

f'c (ksi) 
(MPa) 

fy (ksi) 
(MPa) 

Ag (in2) 
(mm2) 

As (in2) 
(cm2) 

Anet (in2) 
(cm2) 

Ndesign (kips) 
(kN) 

3  60  346.50  4.70  341.80  1150 
(20.68) (413.68) (2235.48) (30.32) (2205.16) (5115.45) 
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2.2 Evaluation of reduced capacity 

Vehicle impacted and damaged residual column capac-
ity can be computed introducing damage index (λ). 
Damaged column rating its severity, can be retrofitted 
for service. However, if the severity exceeds from 
highly damaged to collapse, the structural member 
shall no longer fulfill serviceability criteria. In this con-
dition, the replacement of the structural member is in-
evitable. The assessment of damage level of the im-
pacted pier has dealt a great concern. The damage of 
reinforced concrete material under impact load shall 
be identified by introducing some parameters, known 
as damage indices. To find the severity of the impacted 
damaged structure, damage index (λ) can play a signif-
icant role. Damage index, λ, can be assessed by the 
Equation 7 as shown in [19, 20]. 

λ =
Idyn

Vdyn

(7) 

where: Idyn is explained, and Vdyn expresses the dynamic 
shear due to high strain rate vehicle impact.  
Damage index (λ) and residual strength (Nr) of the post 
damaged representative bridge pier is directly corre-
lated, and is as shown in Equation 8 [19, 21]. 

𝜆 = 1 −
𝑁𝑟

𝑁𝑑𝑒𝑠𝑖𝑔𝑛

(8) 

where: Nr is the residual strength of the damaged col-
umn after vehicular impact whereas Ndesign is the design 
axial load carrying capacity of the undamaged rein-
forced concrete bridge pier as stated in ACI. 
By rearranging Equation 8, the residual strength of the 
damaged RC pier can be determined, as shown in Equa-
tion 9 [17]. 

𝑁𝑟 = (1 − 𝜆) ∗ 𝑁𝑑𝑒𝑠𝑖𝑔𝑛 (9) 

where: fc’ is the 28-day compressive strength of con-
crete, σo is the yield strength of steel, and Ag and As are 
the gross cross-sectional area of concrete and total 
cross-sectional area of longitudinal steel, respectively. 
Furthermore, the shear capacity offered by the trans-
verse reinforcement, Vs is calculated using Equation 10. 

𝑉𝑠 = 𝜋 2⁄ 𝐴ℎ𝜎𝑦ℎ 𝐷′ 𝑠⁄ (10) 

where: Ah is the area of a single hoop or spiral, D’ is the 
spiral or hoop diameter, s denotes the pitch of the helix, 
and σyh represents the yield stress of transverse steel 
(shear reinforcement).  
The dynamic shear (Vdyn) and shear capacity of the pier 
(Vn) are correlated by the relationship shown in the 
Equation 11 [21]. 

𝑉𝑑𝑦𝑛 = 𝑉𝑛 ∗ (𝐷𝐼𝐹) (11) 

where: DIF is the dynamic impact factor, and Vn is the 
shear capacity of the reinforced concrete (RC) pier with 
spirally arranged shear reinforcement. 
The Dynamic Impact Factor (DIF) quantifies the in-
crease in force experienced by a structure due to the 
dynamic nature of an impact, compared to a static load. 
The modulus of elasticity of the reinforcing steel bar at 
the strain hardening stage, EP, is determined using 
Equation 9. However, DIF can be expressed in terms of 
quasi-static strain rate (έ) as expressed in the Equation 
15 via Equations 12 through 15. The variables used in 
Equation 12 through 15 are already explained earlier 
[4, 22, 23] 

𝐸𝑝 = 𝜎𝑃 𝜀𝑒𝑓𝑓⁄ (12) 

𝜎𝑑𝑦𝑛 = [1 + (𝜀́ 𝐶⁄ )1 𝑃⁄ ] ∙ (𝜎𝑝 + 𝛽𝐸𝑝𝜀
𝑒𝑓𝑓) (13) 

𝜉 = 0.019 − 0.009(𝜎𝑑𝑦𝑛 60⁄ ) (14) 

𝐷𝐼𝐹 = (
𝜀́

10−4
)

𝜉

(15) 

where: έ is the strain rate considered as 5.4 × 10-4 s-1, ξ 
is a constant which depends on the dynamic yield 
stress of steel at the strain hardening zone, σdyn is the 
dynamic yield stress of longitudinal (main) reinforcing 
steel, fy is the initial yield stress, which is taken as 60 
ksi (420 MPa) as per ASTM A706 for the yield stress at 
the elastic zone for grade 60 steel rebar, εeff is the equiv-
alent plastic strain, taken as 0.72, Ep is the plastic hard-
ening modulus, β is the hardening parameter which 
ranges from 0 to 1 and is taken as 0.5 in this study, and 
parameters C and P are the strain rate parameters as 
expressed in [12].  

3. Load model and material properties of rep-
resentative pier 
3.1 Impact load application 

To scrupulously evaluate the serviceability, structural 
integrity, and dynamic response of a circular RC bridge 
pier subjected to extreme loading, a detailed analysis 
was performed using a representative test prototype 
pier, as shown in Figure 2. The primary objective was 
to assess the pier’s behavior during and immediately 
after a vehicular impact. Key areas of focus included de-
formation patterns, crack propagation, energy dissipa-
tion, and the residual load-carrying capacity of the col-
umn following the collision. 
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Figure 2 (a) Representative RC pier, (b) Section A-A, and (c) Load with end conditions. [11]. 

The test pier has been selected from a previous experi-
mental study conducted by [24]. This report offers ex-
tensive experimental data, including geometry, mate-
rial properties, reinforcement details, and impact test-
ing procedures, all of which informed the current ana-
lytical and numerical investigations. Using a well-doc-
umented and validated specimen ensures alignment 
with established research, providing a solid foundation 
for evaluating the real-world performance of similar 
bridge piers under vehicular impact conditions. 

3.2 Material properties 

The test column has been prepared with a concrete 
grade of 3 ksi with a longitudinal (primary reinforce-
ment) steel reinforcement of ASTM A706 [20] having 
grade of 60 ksi. From Figure 2, the detail of column 
cross-sections is well understood. The unrestrained 

length of the pier has been considered as 8.6 feet with 
varying cross-sections. From the top of the foundation 
level, up-to a height of 7 ft (section A-A) the column 
seems to be octagonal whereas the upper part is a rec-
tangular (section B-B) with a length of 1ft.-6 in. The col-
umn has primary reinforcement of (6) #8 steel bars 
(main) throughout the foundation with a spiral shear 
reinforcement by #4 steel (grade of 36 ksi) bar @ 2-1/2 
in pitch via helix formation throughout.  
This research investigates how varying vehicular 
weights affect the performance of the test column 
GGSS-1 (24), which has been normalized to represent a 
traditional circular RC half-sized prototype bridge pier. 
A relationship has been developed to correlate differ-
ent vehicle weights with both the λ and Nr of the col-
umn after impact. Additionally, the pier’s geometry and 
boundary conditions used in the analysis are already il-
lustrated in Figure 3. 

 

Figure 3 M with λ and Nr. 

Figure 3 reveals a distinct and meaningful nonlinear re-
lationship among vehicle weight (M), damage index (λ), 
and the normalized post-impact residual axial load 
(Nr). This relationship is most effectively modeled us-
ing a third-degree (cubic) polynomial regression, 
which captures the underlying complexities of the data 
without sacrificing interpretability. The decision to use 

a cubic model is grounded in both statistical perfor-
mance and physical relevance: it achieves a high coeffi-
cient of determination (R² = 0.96 overall, and 0.932 for 
both M and λ), indicating that the model explains a sub-
stantial proportion of the variance in Nr. 
The cubic polynomial is particularly well-suited for this 
application because it allows the model to express one 

y = 0.0026x3 - 0.3664x2 + 16.133x - 208.91

R² = 0.9322

y = -0.0369x3 + 5.1301x2 - 225.86x + 4324.7
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inflection point and up to two turning points endorses 
that align with the expected nonlinear behavior ob-
served in real-world structural response data. For in-
stance, as vehicle mass increases, its influence on dam-
age and residual load may initially be marginal, then in-
tensify beyond a certain threshold, and potentially plat-
eau or even diminish under more extreme conditions 
due to material failure or energy dissipation mecha-
nisms [21]. Such behavior cannot be adequately cap-
tured by linear or even quadratic models, which im-
pose overly rigid assumptions about monotonicity or 
constant curvature. 
On the other hand, higher-order polynomials, while ca-
pable of producing tighter statistical fits (i.e., higher R² 
values), often do so at the cost of model generalizabil-
ity. They tend to introduce artificial oscillations be-
tween data points, an effect known as Runge's phenom-
enon leading to overfitting and decreased predictive 
robustness, especially outside the range of the ob-
served data. This makes the cubic model a pragmatic 
middle ground. It is complex enough to reflect the nu-
anced interplay between impact conditions and struc-
tural response, yet restrained enough to maintain sta-
bility and physical interpretability. 
The adequately fit model and theoretical justification 
behind the selection of model structure suggest that 
the cubic polynomial regression not only provides a 
statistically reliable representation but also encapsu-
lates the physical interactions governing post-impact 
axial load behavior. This enhances confidence in its use 
for both analysis and predictive modeling in structural 
safety and resilience assessments. 
Equations (16) and (17) present the derived mathe-
matical expressions that define these correlations for 
the specific case of a high-velocity vehicular impact sce-
nario applied to a half-scale reinforced concrete (RC) 
bridge pier specimen. These equations provide valua-
ble insight into the complex structural behavior of the 

pier under dynamic loading conditions, and can be 
used to predict the residual capacity of the representa-
tive RC pier at specific impact scenario. 

𝜆 = 0.0026 ∗ 𝑀3 − 0.36 ∗ 𝑀2

+16.13 ∗ 𝑀 − 208.91 (16)
 

𝑁𝑟 = −0.036 ∗ 𝑀3 + 5.13 ∗ 𝑀2

−225.86 ∗ 𝑀 − 4324.7 (17)
 

where: λ, Nr, and M are already explained. 

4. Prediction of probability of failure model 

Probability of failure (Pf) in the damaged structures 
needs a rigorous study to predict the failure possibili-
ties. Damage index (λ) provides a comprehensive un-
derstanding to assess the failure phenomenon. Any 
structural failure occurs when demand exceeds the ca-
pacity [25]. However, probability of failure in this re-
search has been interpreted by the damage index (λ). 
Mathematically, probability of failure has been shown 
in Equation 18 [26]. 

𝑃𝑓 = ∫ 𝑔(𝑥𝑖

𝑧≤0

−∞

)𝑥𝑖𝑑𝑥 = ∫ 𝜆(𝑥𝑖

+∞

𝑐

)𝑥𝑖 (18) 

where: Pf is the probability of failure, λ represents dam-
age index. In addition, g(x) represents a performance 
or limit state function and xi is a vector of all the ran-
dom variables included in the limit state function. 
From Equation 18, it is well understood that Pf is a func-
tion of λ. On the other hand, (1 - λ) predicts the struc-
tural reliability. Determination of the Pf as a function of 
probability density function (PDF), shall be executed in 
performing the integration over the region of failure 
[27]. Estimated zone for predicting Pf can be easily 
identified from Figure 4. 

 

Figure 4 Pf,model and λmodel. 
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Figure 4 reveals a distinct yet complex and quantifiable 
relationship between Pf and λ best described by a fifth-
degree polynomial regression model. This model 
demonstrates a moderate fit, with an R2 value of 0.63, 
indicating that it accounts for a significant portion of 
the observed variability. At approximately λ = 0.24, Pf 
reaches its peak value of around 0.62, forming a dis-
tinct plateau. This peak represents a critical transition 
point in the failure response, beyond which the system 
begins to exhibit recoiling behavior influenced by 
damping and oscillatory effects. Thus, λ = 0.24 ad-
dresses a pivotal threshold where the risk of failure has 
been captured highest. 
Interestingly, within the range 0.41 ≤ λ ≤ 0.49, Pf exhib-
its a temporary decline. This indicates that immedi-
ately after a high-velocity impact, the concrete briefly 
gains compressive strength, likely due to strain rate ef-
fects, which then diminishes as λ continues to increase. 
Despite ongoing damage accumulation, the failure 
probability growth rate stabilizes or slightly attenu-
ates, likely due to energy dissipation mechanisms and 
structural resilience [21]. These post-peak dynamics 
underscore the role of the system's inherent responses 
in moderating failure progression. However, Figure 4 
effectively illustrates the post-impact performance of 
piers under high-velocity, short-duration vehicle colli-
sions, by precisely capturing the complex behavior un-
der high strain rate loading [20]. 

4.1 Predicting probability of failure by Weibull 

The Weibull distribution is a versatile statistical model 
commonly used in reliability engineering, failure anal-
ysis, and depicting survival strategies. It can accurately 
represent different types of failure rates; such as in-
creasing, constant, or decreasing, by adjusting its shape 
parameter, making it ideal for modeling the life expec-
tancy of structural elements and systems under various 
loading conditions. Pf for accidental damage has also 
been assessed by using Weibull method and introduc-
ing log-normal distribution as shown in [28]. Accord-
ingly, Pf can be evaluated by using Equation 19. 

𝑃𝑓 = ∫ 𝑝(𝑎) ∗ {1 − 𝑃𝐷(𝑎)} ∗ 𝑑𝑎

+∞

𝑐

(19) 

where: For the present study, p(a) is ith of damage index 
(λi) and PD(a) denotes the logarithmic distribution of 
damage index.  

4.2 Predicting probability of failure by log-nor-
mal distribution 

A log-normal distribution apprehends a positive-val-
ued variable whose logarithm is normally distributed. 

It’s useful for modeling things that grow multiplica-
tively, and tends to be skewed right with a long tail of 
larger values. By substituting the variables into Equa-
tion 19, the expression can be reformulated by using 
log-normal distribution in terms of λ, resulting in Equa-
tion 20 [27]. 

𝑃𝑓 = ∫ 𝜆(𝑥) ∗ {1 − 𝑙𝑜𝑔(𝜆𝑖)} ∗ 𝑑𝑥

+∞

𝑐

(20) 

A comparative analysis between the failure probabili-
ties predicted by the model described in Equation 19 
and those derived from the Weibull distribution (Equa-
tion 20) reveals important distinctions in their predic-
tive behavior and practical applications. The Weibull-
based model (Equation 20) offers a more nuanced rep-
resentation of failure patterns, particularly in its ability 
to describe the statistical distribution of damage across 
a range of severity levels. It captures the probabilistic 
evolution of failure more comprehensively, thereby en-
abling clearer delineation of failure zones and their 
parametric boundaries. 
In contrast, the model defined by Equation 19 tends to 
adopt a more conservative side, producing failure 
probability estimates that can capture errors on the 
side of caution. This conservative bias can be advanta-
geous in safety-critical contexts, where underestimat-
ing the risk of failure may have serious consequences. 
While potentially less precise in mapping gradual 
changes in damage progression, this model ensures a 
higher safety margin, making it particularly suitable for 
applications involving structural integrity under un-
certain or variable loading conditions. 
The Weibull model, on the other hand, often yields 
more liberal or optimistic predictions, reflecting its 
sensitivity to variations in material behavior and fail-
ure thresholds. While this can offer a more flexible and 
realistic depiction of failure probability under con-
trolled conditions, it may underrepresent risk in sce-
narios involving high uncertainty or low fault toler-
ance. 
Figure 5 visually contrasts the two approaches by de-
picting the probability of failure across various damage 
levels. The visualization highlights how the Weibull 
distribution captures a smoother, more continuous 
transition in failure likelihood, while the Equation 4 
model shows a sharper and earlier onset of critical fail-
ure regions. This comparative depiction not only un-
derscores the differing predictive philosophies of the 
two models but also offers valuable insight into their 
suitability for specific engineering applications, 
whether prioritizing reliability through conservatism 
or precision through statistical fidelity. 
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Figure 5 Pf and λ for Model and Weibull. 

A comparative analysis has been conducted between 
the Pf models developed using the β formalism and 
Weibull distribution approaches, revealing notable dis-
tinctions between the two methodologies. The β-based 
model tends to produce conservative estimates, con-
sistent with previous observations, indicating a cau-
tious prediction of failure probability. In contrast, the 
Weibull model exhibits slight fluctuations or variability 
in its predictions, reflecting its sensitivity to data nu-
ances. 
Both models establish relationships between the Pf and 
the parameter λ, as described in Equations 21 and 22. 
Equation 21, representing the β model, yields a moder-
ate coefficient of determination (R² = 0.6), indicating a 
conservative yet reasonably and accurately fit to the 
observed data. In contrast, Equation 22, based on the 
Weibull formalism, exhibits an exceptionally high R² 
value of 0.99, suggesting an almost overfitting the data. 
However, this apparent precision is potentially mis-
leading, as it fails to adequately represent the underly-
ing risk, particularly within the regions characterized 
by high uncertainty or large negative gradients, and ob-
scuring critical failure domain and post impacting be-
havior in practical implementations. 
In addition, the stark contrast in R² values, highlighting 
a value of 0.99, demonstrates the Weibull model’s 
stronger ability to capture the underlying relationship 
between Pf and the corresponding λ. This indicates its 
superior precision in modeling observed behavior. In 
contrast, the β model, though more conservative, may 
be preferable in safety-critical applications where un-
derprediction of failure could have serious conse-
quences having windows to move with data precision 
back and forth. These findings underscore the inherent 
trade-off between precision and robustness, while the 
Weibull model offers closer alignment with data 
trends, its tendency to produce negative values in cer-
tain regions may undermine its practical validity. The 

βmodel, despite potentially lower accuracy, provides a 
more stable and cautious estimate depicts an essential 
attribute in predicting the risk-averse scenarios.  

𝑃𝑓,𝑚𝑜𝑑𝑒𝑙 = −11.52(𝜆4) + 27.11(𝜆3) − 18.54(𝜆2)

+4.26(𝜆) − 0.09 (21)
 

𝑃𝑓,𝑊𝑒𝑖𝑏𝑢𝑙𝑙 = −24.05(𝜆4) + 55.98(𝜆3) − 42.52(𝜆2)

+11.70(𝜆) − 0.72 (22)
 

where: Pf and λ are already explained.  

5. Assessment of reliability 

The damage and probability of failure have been well 
correlated, and failure due to dynamic intensity will 
predicted. However, this needs an intensive parametric 
study prior to be commended Reliability analyses are 
performed to evaluate the performance of structures in 
real-world conditions with uncertain loadings and 
structural details. Simple structural analysis will show 
if a structure will or will not fail under precise condi-
tions; in cases where the structural demand or re-
sistance is non-deterministic, a reliability analysis is in-
stead used to determine the likelihood of failure, [11]. 
Reliability of any structural failure phenomenon can be 
figured out by introducing reliability index (β), which 
is the inverse of the variation of probability of failure 
(Pf), and hence represented in Equation 23 [20]. 

𝛽 = −Φ−1(𝑃𝑓) (23) 

where: Φ-1 is the inverse of the tail probability function 
of the standard normal distribution, Pf and β are al-
ready explained. 
The Pf and corresponding β are essential metrics in 
bridge engineering that quantify the likelihood of 
structural failure and provide a standardized measure 
of safety, respectively. Nowak’s work [25] is founda-
tional in calibrating these values specifically for 

y = -24.047x4 + 55.984x3 - 42.419x2 + 11.706x - 0.7239
R² = 0.5995

y = -11.952x4 + 27.331x3 - 18.545x2 + 4.2671x - 0.0998
R² = 0.9952
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bridges, establishing consistent and practical guide-
lines that engineers worldwide rely on [21]. His stand-
ardization enables uniform safety assessments across 
different bridge designs and loading conditions, bridg-
ing the gap between theoretical reliability concepts and 
real-world applications. Moreover, predictive models 
for reliability indices that closely align with Nowak’s 
standards confirm their accuracy and usefulness, al-
lowing engineers to confidently evaluate and enhance 
bridge safety without always resorting to extensive 
physical testing. This approach ultimately supports 
safer bridge designs, informed maintenance prioritiza-
tion, and robust engineering codes, ensuring public 
safety and infrastructure resilience. 

5.1 Reliability prediction by normalization 

Reliability assessment of the failure criteria can be well 
anticipated by normalizing the failure zones. Hence, cu-
mulative distribution function (CDF), Φ(z), can be fol-
lowed by with the feasible uncertainty conditions as 
shown in Equation 24 [26]. 

Φ(z) =
1

√2𝜋
. ∫ exp(−

z2

2
)dz

𝑧≤0

−∞

(24) 

where: Φ is CDF of the standard normal random varia-
ble. 

5.2 Reliability prediction by Allen Method  

The design criteria in the Canadian Code of practice 
(CSA-S6-88) are based on a reliability index of 3.5 for a 
reference period of 50 years, whereas β referred for pe-
riod of one year. This period has been chosen as a more 
suitable for bridge evaluation. For bridge elements the 

β for one year, corresponding to a βof 3.5 for 50 years 
has been shown. However, β resulting 3.5 for elements 
carrying dead load only and 4.0 for elements carrying 
traffic load only [25]. Notionally, Pf in respect of β has 
been utilized for bridge calibration. Model predicting β 
has been compared with the results derived via using 
Allen [29] and Nowak [25].  

5.2.1 Standardized Reliability Indices for the Bridge 
Calibration 

There is a need for β to be standardized to characterize 
the bridge calibration considering different parame-
ters [29]. However, Pf in bridge based on different per-
spectives are taken into account for the standardiza-
tion. In this approach, β determined is based on a one-
year time interval for all traffic categories except for 
permit controlled and supervised vehicles, where β is 
based on a single passage βAllen is standardized and 
shown in Equation 25 [29]. 

𝛽𝐴𝑙𝑙𝑒𝑛 = 3.5 − [ΔE + ΔS + ΔI + ΔPC] ≥ 2.0 (25) 

where: ΔE is considered as 0.25, ΔS is 0.25, ΔI is 0.25, and 
lastly ΔPC as 0.6, that yields a more conservative stand-
ardized value for βstandardized, Allen as 2.15.  

5.2.2 Comparison of Reliability Indices  

In this research, a model has been developed to predict 
β and corresponding Pf to assess better structural sta-
bility and or vice-versa before recommending the 
structure in service. Nowak has recommended β 
(βNowak) [25] in terms of Pf. Here, βNowak has been stand-
ardized as a reference, and compared with the model 
for the sake of prediction. Pf has been related with β de-
termined from various models as shown in Figure 6.  

 

Figure 6 Pf and various β. 
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The estimated Pf was initially predicted using the 
Weibull distribution, a versatile and widely recognized 
model in reliability analysis due to its ability to repre-
sent a broad range of failure behaviors, from early-life 
failures to wear-out phases. Its shape and scale param-
eters allow flexibility in modeling structural response 
under different stress conditions, particularly in high-
strain-rate scenarios such as vehicular impacts. Given 
the nature of RC pier response under dynamic loading, 
the Weibull distribution offers a more realistic repre-
sentation of progressive failure mechanisms compared 
to more rigid models. 
To evaluate the robustness and consistency of the fail-
ure predictions, β derived from the Weibull model 
were compared against those obtained from the pro-
posed analytical model and the commonly used Normal 
distribution. Although the Normal distribution remains 

a staple in engineering applications due to its mathe-
matical simplicity, it assumes symmetry and constant 
variance, which may not accurately reflect the stochas-
tic nature of impact-induced damage. The comparative 
analysis, as delineated in Figure 7, highlights critical 
differences in the estimation of failure probability and 
structural reliability across these models. The results 
not only validate the proposed model’s conservative-
ness but consistently predict and emphasize the im-
portance of choosing an appropriate distribution for 
reliability assessment in dynamic impact scenarios. 
This integrated comparison provides a more compre-
hensive understanding of failure behavior, enhancing 
confidence in the model’s application for post-impact 
evaluations, damage assessment, restrengthening 
along with the design calibrations. 

 

Figure 7 Weibull failure and various β. 

In addition, Pf and the corresponding β derived from 
various computational models have been examined 
through a parametric study to identify regions within 
the system that are more prone to failure. By systemat-
ically varying input parameters and observing their im-

pact on Pf and β, the analysis helps address out poten-
tial failure zones and quantify their reliability levels. 
This approach provides valuable insight into system 
behavior under different conditions, guiding decision-
making for safer and improved design. The results are 
visually presented in Figure 8. 

 

Figure 8 Failure prediction with the various β. 
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Capturing results from Figure 7, trending pattern of 
model has been formalized to Equation 26, with de-
cently increased and tight R2 value of 0.79. 

𝛽𝑚𝑜𝑑𝑒𝑙 = −0.01 ∗ 𝑝𝑓
5 + 0.22 ∗ 𝑝𝑓

4 − 1.64 ∗ 𝑝𝑓
3

+5.12 ∗ 𝑝𝑓
2 − 5.71 ∗ 𝑝𝑓 + 2.0 (26)

 

where: βmodel addresses reliability index of model and Pf 
is the corresponding probability of failure for the spe-
cific predictive model. 
Figure 8 can capture the failure zone and its reliability 
from its determined from, and failure envelop predict-
ing the feasible reliability zone. 
Additionally, a whisker plot as a key analytical tool to 
evaluate and compare the reliability indices of different 
models, as derived from various statistical failure for-
malisms has been employed. The whisker plot effec-
tively captures the spread, central tendency, and varia-
bility of the data, enabling a clear visualization of how 
each model performs under uncertainty. By displaying 
the median, interquartile range (IQR), and potential 

outliers, the plot provides critical insights into the ro-
bustness and consistency of each model’s predictions, 
facilitating a deeper understanding of their relative re-
liability.  
A whisker plot, or box-and-whisker plot as shown, rep-
resents a statistical diagram that visually summarizes 
the distribution of a dataset which has been furnished 
in Figure 9. It displays the median, IQR, and overall 
spread of the data, while also identifying potential out-
liers. The box represents the middle 50% of values 
(from the first quartile to the third quartile), with a line 
indicating the median. The ‘whiskers’ extend to the 
minimum and maximum values within 1.5 times the 
IQR, and any data points beyond this range are marked 
as outliers. This plot is especially useful for comparing 
variability and detecting skewness or anomalies across 
multiple data groups. This contributes to an insightful 
understanding that facilitates bridging the gap be-
tween the developed mathematical model and other 
established models. 
 

 

Figure 9 Failure prediction via various β. 

6. Reduction in reliability index 

A comparative analysis of Figures 6 through 9 indicates 
that the developed model for estimating the β demon-
strates conservative behavior, producing values 
slightly higher than those predicted by the failure 
model based on a log-normal distribution. To further 
assess and visualize the performance of these models, 
Figure 9 employs a whisker plot, a robust statistical 
tool that highlights the distribution characteristics of β 
across multiple failure formalisms. This plot provides a 
detailed view of central tendency, spread, and potential 
outliers, facilitating a nuanced comparison of model be-
havior under uncertainty.  
The use of percent difference in β values (p) serves as 
a critical parametric indicator for evaluating post-im-
pact performance, demonstrating that the proposed 
model consistently holds a strong and stable position 
relative to the established statistical benchmarks. This 

metric is essential in statistical analysis because it 
quantifies the relative deviation between predicted 
and reference values, enabling normalized and mean-
ingful comparisons across different models or datasets. 
By providing a clear measure of model accuracy and 
stability, especially under varying conditions, percent 
difference helps validate the reliability of predictions. 
Consequently, the β value derived from the proposed 
model has been substantiated as a reliable control 
benchmark, and hence corroborated as a control pa-
rameter and standardized metric. 
This conclusion is further supported by sensitivity 
studies conducted by [11], which confirms the model’s 
robustness across a range of impact scenarios. Addi-
tionally, the percent difference data summarized in Ta-
ble 2 strengthens this assessment by offering a quanti-
fiable evaluation of the model’s reliability performance, 
particularly in the demanding context of short duration 
high-velocity truck collisions.
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Table 2 Percent difference in β. 

β Magnitude % Difference (p) Standard deviation (SD) 

βmodel (Control) 2.03 0  
βnormal 1.99 2.01 4.49 
βNowak 2.1 3.33  
βstandardized(Allen) 2.14 5.14  
βAllen 2.3 11.74  

Table 2 offers a detailed examination of how the β var-
ies in relation to the percent difference of itself (p), ef-
fectively illustrating the model’s response under differ-
ent probabilistic scenarios. This comparison provides 
not only a quantitative measure of performance but 
also insight into how well the model captures the un-
derlying uncertainty in structural response. A key ob-
servation from the table is the computed standard de-
viation (SD) of β, which is found to be 4.49. This rela-
tively low SD indicates a narrow spread of β values, 
suggesting that the model outputs are consistent and 
not heavily influenced by outliers or extreme varia-
tions. Such statistical stability reinforces the reliability 
of the model when applied across a wide range of fail-
ure probabilities. 

To further enhance the interpretability of these find-
ings, the relationship between β and p has been visual-
ized in Figure 8. This plot offers a graphical represen-
tation of the trends observed in Table 2, allowing for 
more intuitive and immediate comprehension of how 
the β behaves across different probability thresholds. 
By capturing this data visually, Figure 8 reveals the 
overall shape and consistency of the β distribution, 
highlighting areas of both stability and transition. Con-
jointly, Table 2 and Figure 10 complement each other 
by combining stochastic precision with visual clarity, 
reinforcing the conclusion that the proposed model 
performs reliably and maintains predictive coherence 
under varying levels of probabilistic demand. 

 

Figure10 β for various p. 

From Figure 10, a holistic relationship between the β 
and p using different probabilistic models can be inter-
preted and formalized, as described by Equation 27. 
This equation provides a mathematical foundation for 
understanding how variations in various β from βmodel 
influence the corresponding values of p, enabling a 
more comprehensive interpretation of the model’s 
probabilistic behavior tailored due to percent varia-
tion. The visual trend observed in Figures 8 and 9 align 
closely with the theoretical relationship expressed in 
Equation 27, further validating the model's consistency 
and its applicability in reliability-based assessments. 

𝛽 = 0.55 ∗ (𝑝2 − 𝑝) (27) 

where: β and p are already explained. 

Equation 27 has been derived from a smooth second-
degree polynomial fit, as illustrated in Figure 9, with a 
high coefficient of determination (R²) value of 0.96. 
This strong correlation indicates that the polynomial 
model accurately captures the trend between the vari-
ous β and the p, validating the quality and consistency 
of the data. The close fit not only reinforces the func-
tional relationship between β and p but also enhances 
confidence in using this model for predictive reliability 
analysis to precisely trigger the failure domain. 
This polynomial correlation proffers a deeper concep-
tual understanding of the interrelationship between 
the β and the p as illustrated, particularly in the context 
of structural failure assessment. As β increases, the as-
sociated Pf obviously decreases, though the trend, as 
observed in the polynomial curve suggests a gradual 
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and nonlinear transition rather than a sharp drop. This 
smooth curvature reflects a nuanced, interpretable pat-
tern in which the change in failure probability occurs 
progressively with increases in reliability, rather than 
abruptly. Such behavior is especially valuable when as-
sessing structural performance under varying levels of 
uncertainty and impact severity. 
The practicality of this polynomial fit lie in its ability to 
accurately represent this inverse relationship while 
maintaining a high degree of statistical integrity. The 
minimal standard deviation (SD) of β values, as shown 
in Table 2, supports the consistency of the model and 
indicates a low level of variability in its predictive out-
puts. Coupled with a high coefficient of determination 
(R² = 0.96), the model demonstrates strong predictive 
reliability and an excellent fit to the data. Altogether, 
the tight correlation, low variability, and smooth trend 
provide a robust and improved framework for correlat-
ing reliability and failure probability, an essential com-
ponent for reliable failure risk evaluation in high-im-
pact scenarios such as critical infrastructure assess-
ments at high speed vehicular collisions. 

6.1 Uncertainty prediction 

Uncertainty prediction is the process of quantifying the 
degree of confidence or doubt in a model’s output, 
which plays a pivotal role in statistical assessments and 
decision-making systems. Rather than offering a single 
deterministic prediction, models that incorporate un-
certainty provide a range or distribution that reflects 
possible variation in outcomes. This is particularly crit-
ical in fields such as structural engineering reliability 
where high-stakes decisions depend not only on the 
predicted values but also on how reliable those predic-
tions are. By identifying regions of high uncertainty, an-
alysts can flag results that require cautious interpreta-
tion, reduce overconfidence in flawed predictions, and 
improve the credibility and safety of automated sys-
tems. However, this seemingly complex mathematical 
analysis warrants deeper scrutiny. 
The precise estimation of overall uncertainty (Ū) is of-
ten achieved through sensitivity analysis, using mathe-
matical tools such as partial derivatives within estab-
lished frameworks like the β-p model. As described by 
Holman (J.P.), Equation 10 demonstrates how Ū can be 
derived by considering small changes in each inde-
pendent variable xi affect and control the output. This 
approach allows for the decomposition of total uncer-
tainty into individual contributions (Ūi where i = 1, 2, 3, 
……., n), as outlined in Equation 12. By isolating these 
components, practitioners gain insight into which var-
iables most influence the model's uncertainty, helping 
prioritize data collection, refine models, and reduce er-
ror propagation. This not only improves the model's 
predictive accuracy illustrate risk but strengthening its 
interpretability and operational resilience [19, 30] as 
shown in Equation 28. 

Ū = ±

[
 
 
 
 {(

𝜕𝛽

𝜕𝑥1
) ∗ Ū1}

2

+ {(
𝜕𝛽

𝜕𝑥2
) ∗ Ū2}

2

+ − − − ∓{(
𝜕𝛽

𝜕𝑥𝑛
) ∗ Ū𝑛}

2

]
 
 
 
 

1
2

(28) 

where: Ū is the overall uncertainty, Ūi be the uncer-
tainty associated in the individual variable, and ∂β/∂xi 

represents the partial derivative of β with respect to in-
dividual variables xi, where i = 1, 2, 3, …………, to n. 
In order to simplify the uncertainty analysis, the model 
has been reduced to focus on two primary variables: β, 
the dependent variable, and p, the independent varia-
ble. This reduction not only carries out the analysis 
more tractable but also centers attention on the most 
influential parameters affecting system performance. 
Within this reduced framework, Equation 10 has been 
normalized to express the total uncertainty (Ū) in 
terms of just these two variables. By isolating β and p, 
the model minimizes complexity while retaining the 
ability to capture the dominant sources of variability 
that improves the model. 
To estimate the uncertainty specifically associated with 
p, the analysis utilizes a conservative mean value, de-
noted as pm, drawn from empirical data presented in 
Table 2. Using a mean value ensures stability in the un-
certainty estimation process, particularly when data 
variability is limited or when worst-case scenarios 
must be avoided in sensitive applications. 
To further streamline the calculation of uncertainty, 
Equation 12 is reformulated by reducing variables, re-
sulting in Equation 13 as described by Holman (J.P.). 
This approach enables the propagation of uncertainty 
across multiple variables by evaluating how infinitesi-
mal changes in each input contribute to the overall var-
iation in the output. Once the independent parameters 
are normalized, partial derivatives can be used to as-
sess the sensitivity of the dependent variable with re-
spect to each input, one at a time, while holding the oth-
ers constant. Despite the stepwise nature of partial dif-
ferentiation, this method effectively captures the cu-
mulative effect of multiple simultaneous variations 
when applied through the single variable partial differ-
ential framework to precisely capture uncertainty (Ūi). 
This technique offers a more holistic and precise esti-
mation of the total uncertainty (Ū), particularly in sys-
tems where interactions among variables are signifi-
cant and cannot be ignored. In the present context, such 
a formulation not only reduces computational com-
plexity but also enhances the interpretability of results. 
By breaking down how each variable contributes to the 
overall uncertainty, practitioners can better identify, 
isolate, and manage sources of error, inevitably im-
proving the robustness and reliability of the system or 
model under risk analysis as shown in Equation 29. 

Ū = ±[
𝜕(𝛽)

𝜕(𝑝)
] ∗ {𝑝𝑚} (29) 

where: Ū and β have already been addressed, and pm 
indicates mean percent variation.  
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Equation 29 yields an uncertainty value (Ū) of ±4.3%, 
which at first glance appears relatively minor and 
within acceptable bounds, given that Ū ≤ 5.0% is typi-
cally considered low and acceptable in many engineer-
ing and scientific contexts. The determination of Ū in 
this case is predominantly influenced by a single pa-
rameter, pm. As a result, the overall uncertainty assess-
ment may be overly optimistic, as it overlooks the po-
tential contributions of other sources of variability that 
were either excluded or optimized during model sim-
plification. Relying heavily on a single variable can 
mask underlying sensitivities and interdependencies 
that may significantly impact the reliability of the 
model in real-world applications. Therefore, while the 
reported uncertainty appears small, it may represent 
the true risk or variability inherent in the system. 

7. Results and discussions 

Reinforced concrete (RC) piers are among the most vul-
nerable structural components during vehicle colli-
sions, primarily due to their exposed locations and 
slender geometries. Despite their susceptibility, the cri-
teria that define their optimal impact performance and 
structural resilience under such dynamic events re-
main insufficiently understood. This highlights a criti-
cal need to assess the resilience of existing infrastruc-
ture against vehicular impacts in terms of energy dissi-
pation [31], to develop targeted strategies that mini-
mize damage and enhance performance. 
This study presents a robust analytical framework for 
evaluating the material capacity and dynamic demand 
of RC pier, with an emphasis on their post-impact be-
havior. A detailed analytical model has been developed 
to quantify damage based on dynamic response char-
acteristics. The model has been rigorously validated 
against commonly used multiple statistical approaches 
that were extracted from various published articles to 
predict post-impact severity. Results indicate that the 
proposed model consistently outperforms traditional 
methods, offering superior predictive accuracy, greater 
conservatism where necessary, and enhanced reliabil-
ity under a range of impact conditions. Its performance 
demonstrates strong potential for practical implemen-
tation in both assessment and design applications, 
making it a valuable tool for improving the resilience of 
critical transportation infrastructure. The key findings 
from this investigation are summarized as follows: 
• Performance-Based Assessment: The study investi-

gates the dynamic response of RC piers subjected to 
short-duration, high-velocity impacts, offering a 
performance-based perspective that captures the 
severity of post-impact behavior and severity of 
damage in representative pier configurations. 

• Material Demand and Model Correlation: This re-
search explores material requirements essential for 
enhancing impact resistance. It establishes a mean-
ingful and realistic correlation between the pro-
posed mathematical model and other widely used 
statistical approaches, reinforcing the model’s ana-
lytical rigor and predictive capability. 

• High-Accuracy Prediction and Conservatism: Simu-
lation results demonstrate high accuracy in estimat-
ing damage at both the pier and foundation levels 
under extreme vehicle impact scenarios. This in-
stills Pf and corresponding β were evaluated across 
various utilized statistical models. The proposed 
model exhibits conservative stochastic behavior, 
whereas others tend to be more liberal, potentially 
underestimating risk. 

• Uncertainty Quantification: The model underwent 
uncertainty analysis and yielded a coefficient of un-
certainty (Ū) of ±4.3%, which falls well within the 
acceptable threshold (Ū ≤ 5%) for risk-sensitive ap-
plications. This makes the model a reliable tool for 
estimating post-impact damage without requiring 
destructive testing under extreme short duration 
dynamic loading conditions. 

• Material Behavior and Calibration Insights: In addi-
tion to structural assessment, the study contributes 
valuable insights into material behavior and cogni-
tive impact response, providing a robust foundation 
for improved decisive accurate future calibrations 
and material optimization strategies. 

• The findings yield critical insights into material per-
formance, energy dissipation mechanisms, and im-
pact tolerance, thereby informing future calibration 
methodologies and advancing the development of 
structurally resilient and energy-efficient systems 
across diverse engineering applications by enhanc-
ing improved resilient structural designs. 

8. Conclusions and future works 

RC structural members including piers due to its non-
deterministic behavior are among the most vulnerable 
components in vehicle collision scenarios, primarily 
due to their exposed locations, slender geometries and 
boundary conditions. Despite their critical role in sup-
porting transportation infrastructure, the criteria de-
fining their optimal impact performance and structural 
resilience under dynamic loading conditions remain in-
sufficiently characterized. This gap underscores the 
pressing need to assess the capacity of existing RC piers 
to withstand vehicular impacts and to develop effective 
mitigation strategies that minimize damage while en-
hancing overall performance. The essence of this study 
is summarized as follows: 
The proposed model, while conservative in nature, ef-
fectively captures the specific damage mechanisms as-
sociated with high-velocity vehicular impacts. It pro-
vides a cognitively robust framework that accounts for 
both risk and uncertainty in failure prediction, making 
it a reliable tool for post-impact assessment and resili-
ence-based design. 
By integrating damage quantification with probabilis-
tic analysis, the model offers a comprehensive frame-
work that balances deterministic accuracy with uncer-
tainty management, making it suitable for risk-in-
formed decision-making guideline. 
The study introduces a cognitively driven approach to 
structural assessment, combining physical realism 
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with mathematical rigor to bridge the gap between the-
oretical prediction and practical implementation. 
The model demonstrates strong agreement with simu-
lation results and statistical benchmarks, validating its 
capacity to predict post-impact performance more ac-
curately than commonly used empirical tools. 
The model used can facilitate early detection and clas-
sification of damage severity without requiring de-
structive testing, thereby offering a cost-effective solu-
tion for evaluating existing infrastructure subjected to 
extreme impact events. 
The uncertainty investigation reveals a narrow uncer-
tainty band (Ū of ±4.3%), indicating high model relia-
bility. This is particularly valuable in safety-critical as-
sessments where prediction confidence is paramount. 
Future research should focus on the rigorous experi-
mental validation of the proposed mathematical model 
to establish its practical relevance and predictive relia-
bility. While the analytical framework provides valua-
ble theoretical insights into the mechanisms of cos-
metic damage, it cannot be deemed complete without 
empirical confirmation. Experimental investigations 
are essential for assessing the model’s behavior under 
real-world conditions, where variables are often inter-
dependent and difficult to isolate. These studies should 
include controlled, high-precision testing across a di-
verse set of parameters, such as varying geometries, 
material compositions, loading rates, and impact con-
ditions to capture the full spectrum of factors influenc-
ing cosmetic surface damage. By addressing these var-
iables systematically, researchers can better evaluate 

the strengths and limitations of the model in represent-
ing complex structural responses. 
Moreover, such validation efforts serve a dual purpose: 
enhancing the model’s credibility and informing the de-
velopment of more effective re-strengthening strate-
gies. Understanding the nuances of how different sys-
tems behave under both operational and accidental 
stresses allows for tailored interventions that improve 
long-term durability and resilience. The integration of 
analytical modeling with empirical data is critical for 
transitioning theoretical concepts into practical engi-
neering solutions. This holistic approach not only 
bridges the gap between simulation and application 
but also supports the design of structures that are bet-
ter equipped to endure real-world challenges. Last but 
not the least, a well-validated model becomes a power-
ful tool for guiding maintenance protocols, improving 
safety standards with increased serviceability, and 
shaping future innovations in structural engineering. 
Table 3 presents a comprehensive conversion chart de-
signed to facilitate accurate translation between U.S. 
Customary Units and the International System of Units 
(SI). As a critical reference tool, the chart ensures pre-
cision and consistency in unit conversions, thereby 
supporting uniformity in calculations and analytical 
procedures throughout the study. By providing reliable 
and standardized conversion factors, it enables seam-
less cross-referencing and comparison of data across 
different measurement systems, enhancing both the 
clarity and the practical applicability of the presented 
results of all domains. 

Table 3 Conversion of the US Customary Units to the Equivalent SI Units. 

US Customary SI 

1 ksi 6.89 MPa (kN/mm2)  
1 ksi 6894.76 kN/m2 
1 kip-in 0.113 kN-m 
1 kip 4.45 kN 
1 lbs 0.00445 kN 
1 mph 1.61 km/hr 
1 ft-lb/sec 0.00136 kN-m/sec (1.36 N-m/sec) 
1 in 0.0254 m (25.4 mm) 
1 in2 6.4516 cm2 
1 foot 30.48 cm 

Nomenclature 

Idyn dynamic impact force 

Ir  peak reflected pressure or overpressure  

t  duration of the impact event 

E  kinetic energy absorbed by the impacted pier during the collision  

I moment of inertia of the pier's cross-section  

L  length of the pier,  

a vertical distance from the base of the pier to the point where the impact occurs  

b vertical distance from the top of the pier to the impact point  

c perpendicular distance from the NA of the cross-section to the farthest extreme fiber  

M vehicle weight involved in the collision 

k  stiffness of the vehicle’s front structure 

Vc shear strength carried by the concrete and  
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Vs transverse shear capacity 

Ag  gross cross-sectional area of the concrete in the pier 

As  total cross-sectional area of longitudinal steel  

ŝ  shear span 

Ndesign design axial capacity of the pier  

D diameter of the pier cross-section 

fc’  28-day compressive strength of concrete 

fy  yield strength of main (longitudinal) reinforcing steel  

Ah  area of a single hoop or spiral 

D’ spiral or hoop diameter 

S pitch of the helix 

σyh  yield stress of transverse steel 

έ  strain rate of reinforcing steel 

ξ a constant depends on the dynamic yield stress of steel at the strain hardening zone 

σdyn  yield stress of main reinforcing steel bar 

εeff  equivalent plastic strain 

Ep plastic hardening modulus 

β hardening parameter  

C & P strain rate parameters 

Pf  probability of failure,  

λ damage index 

g(x) limit state function and  

xi vector of all the random variables included in the limit state function 

p(a) ith of damage index (λi) 

PD(a) logarithmic distribution of damage index 

Φ CDF of the standard normal random variable 

Φ-1 inverse of the tail probability function of the standard normal distribution 

Δ Allen’s variables 

ΔE energy as 0.25 

ΔS space as 0.25,  

ΔI impact as 0.25  

ΔPC probability as 0.6 

βmodel reliability index of model 

βnormal reliability index at normal distribution 

βNowak reliability index using Nowak’s method 

βAllen reliability index using Allen’s method 

βstandardized (Allen) reliability index using standardized Allen’s method 
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