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Abstract 
Spectral imaging covers hyperspectral and multispectral image acquisition, processing, and analysis. 
Visible-near infrared hyperspectral imaging captures several image channels in 400-2500 nm bands of 
the electromagnetic spectrum. Multispectral is the same as hyperspectral imaging but with fewer image 
channels. Due to the detection of invisible goals via area assessment, the techniques are widely used for 
research and application purposes in different fields. The techniques are applied to assess the external 
and internal properties of objects. Besides providing non-destructive assessments, high accuracy, reli-
ability, repeatability, and speed and low cost are advantages of the techniques. Using image processing 
technology, the acquired images are manipulated to extract and analyze features, and the obtained re-
sults are used in decision-making processes. Biosystems engineering is applying engineering science 
and technology in agriculture, natural resources, and food sectors to move in a sustainable production 
path. Visible-near infrared hyperspectral and multispectral imaging techniques and their advantages 
have been discussed. The techniques have been successfully used in Iran for the detection of diseases, 
ripeness, components, and alterations in plants and plant-based materials. 

Keywords Visible-infrared band, hyperspectral imaging, multispectral imaging, image processing, 
data analysis

1. Introduction 

At first, imaging technology was applied to see objects 
in visible range of the electromagnetic spectrum to do 
different tasks instead of the human eye. This 
technology has vast applications because they are non-
destructive and accurate, reliable, reputable, fast, and 
cheap compared to labor-based operations and 
laboratory methods [1, 2]. Different techniques were 
applied to acquire object images in invisible ranges of 
the spectrum such as X-ray and computed tomography 
(CT) [3, 4]. Invisible techniques can clearly identify in-
ternal properties of materials but they are relatively ex-
pensive, complex to maintain, and time-consuming in 
the imaging process. However, spectral imaging tech-
niques offer more advantages such as high-speed 
measurement capability and lower cost. 
Spectral imaging covers hyperspectral and multispec-
tral imaging. Visible-near infrared (Vis-NIR) hyper-
spectral imaging (HSI) and visible-near infrared multi-
spectral imaging (MSI) as new imaging techniques are 
widely applied in different fields because of detecting 
visible and invisible goals. The advantage of spectral 
imaging over other imaging methods is combining 

spectroscopy and imaging technology to allow area 
assessment of different materials via wave analysis in 
visible-near infrared ranges. So, this method provides 
detailed information about spectral and structural 
changes of materials. These advantages allowed the 
assessment of both internal and external properties of 
materials [5, 6]. The acquired images by the methods 
are processed using different methods to extract and 
analyze image features [7]. Selecting effective 
wavelengths and efficient features may be done to 
achieve better results [8].  
The HIS and MSI methods have been widely used in the 
assessment of different goals in indoor [9, 10] and out-
door conditions [11-13]. The techniques have been 
used in different fields such as industry [14], medicine 
[15], agriculture [16, 17], natural resources [18, 19], 
and food [20, 21]. 
Biosystems engineering covers agriculture, natural 
resources, and food. Its goals are to improve different 
operations in these fields to promote technical, social, 
and economic productivity and reduce environmental 
burdens [22]. Different techniques are used in these 
fields to provide food and living mediums for humans 
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[23] and move on a sustainable production path [24] by 
applying engineering sciences and technologies. 
Agronomy, horticulture, and livestock are the main 
subareas of agriculture while forest, pasture, and fish-
ery are the main subsectors of natural resources. The 
raw products of agriculture and natural resources are 
processed to produce final products in the food sector. 
These sectors are assisted by other subsectors includ-
ing biosystems, veterinary, agricultural economics, 
plant protection, agricultural extension, mechaniza-
tion, and irrigation [25]. The knowledge and technolo-
gies of these sectors are used [26] to improve the re-
quired operations and subsequently enhance produc-
tivity and decrease environmental impacts [20]. As im-
aging, especially new imaging techniques, are useful 
tools to improve operations due to their abilities and 
advantages, the present study aims to introduce HIS 
and MSI techniques and review their applications in bi-
osystems engineering in Iran. To do this, a search in 
Persian and English websites was done to collect the 
cases from the first to the recent applications of HSI in 
agriculture, natural resources, and food in Iran. 

2. Imaging technology  

Imaging is defined as the acquisition of objects’ photos. 
In this technology, the acquired images in different 
wavelength bands of visible and invisible ranges of the 
electromagnetic spectrum are produced [5, 6]. Conven-
tional visible imaging cameras record images in visible 
wavelengths of the spectrum (400-700 nm) from the 
surface of objects. These vision systems are limited to 
surface properties such as color, shape, and texture 
[27, 28]. Although few internal properties of different 
materials are assessed in relation to their surface prop-
erties [29, 30], their internal applications are limited. 
So, invisible imaging techniques such as X-ray, infrared 
thermal imaging, near-infrared hyperspectral imaging, 
and near-infrared multispectral imaging were devel-
oped [31]. The techniques receive wavelengths emitted 
from objects in invisible bands of the spectrum [3, 5, 6]. 
The images in invisible bands are changed to be visible 
in grayscale or pseudo-color form.  
The advantages of imaging technology are high speed, 
accuracy, reliability, and reputability [3, 6]. They can be 
applied in real-time operations and are used instead of 
labor. In these cases, they are better than laborers due 
to lower operations costs and more simplicity. Moreo-
ver, most imaging techniques are non-destructive be-
cause the objects are not destroyed during the imaging 
process. 

2.1 Hyperspectral and multispectral imaging 

Visible-near infrared (Vis-NIR) hyperspectral imaging 
(HSI) or chemical imaging means acquiring objects’ im-
ages in both visible (400-700 nm) and near-infrared 
(700-2500 nm) bands of the electromagnetic spectrum. 
Like spectroscopy, several wavelengths are studied in 
this method. Only three image channels (red, green, 
and blue) are obtained in conventional visible imaging. 
Although visible-near-infrared spectroscopy provides 

abundant information across multiple wavelengths 
and has been widely studied due to its high resolution, 
it is applied to point measurement studies. However, 
the spatial distribution of spectral information is stud-
ied in HSI because an image channel is obtained 
corresponding to each wavelength or a narrow band 
(2-10 nm) in the near-infrared range. 
A spectral imaging system typically consists of a hyper-
spectral detector or camera, optical components, a light 
source, and a computer equipped with image acquisi-
tion and processing software to control the imaging 
process and subsequent processing such as digitiza-
tion, storage, modeling, and decision-making [6, 32-
36]. The optical components of these systems include 
lenses, a spectrometer (or spectral scattering unit), op-
tical filters, and calibration elements. The appropriate 
selection of these components plays a crucial role in en-
hancing the performance of the HSI system and captur-
ing accurate and high-quality hyperspectral images. 
The precise choice of the light source’s spectrum, inten-
sity, stability, and characteristics, based on the specific 
needs of each application is essential [22, 37]. They in-
clude area (single-shot), line, and point scanning sys-
tems [38]. For indoor imaging, tablet HSI and MSI sys-
tems are used while satellite, aircraft, and UAV-
mounted and handheld imagers are applied for the out-
door image acquisition process [12]. 
The obtained image in HSI is called hypercube because 
the number of the acquired image chanels are high 
(more than 75 channels). Hypercube is a matrix includ-
ing spatial (x and y directions) and spectral reflectance 
(z direction) information of the objects [3].  
The recorded image is MSI is similar to HSI, but the 
number of the wavelengths are lower. Image acquisi-
tion in HSI is time consuming come pare to MSI that 
only image channels related to the effective wave-
lengths are acquired. So, the MSI has not limitation of 
real time applications compared to HSI. Another ad-
vantage of MSI is dealing with data with lower volume 
compared to HSI. 

2.2 Hypercube processing and analysis 

Image processing and analysis include image prepro-
cessing, feature extraction, feature selection, and fea-
ture classification [6, 39]. Hypercube processing and 
analysis is like conventional visible image processing 
plus wavelength selection step [22].  
After image preprocessing, it is essential to reduce the 
volume of input data to reduce computational complex-
ity. Therefore, the effective wavelengths must be found 
to extract and use key data from the corresponding im-
age channels. As a large number of image channels are 
acquired corresponding to different wavelengths, the 
effective wavelengths must be found to reduce the di-
mension of the hypercube in z-direction (spectral di-
mension). This step is necessary to provide a multi-
spectral image with a decreased number of wave-
lengths. Different methods are applied to select effec-
tive wavelengths such as principal component analysis 
(PCA), independent component analysis (ICA), kernel 
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PCA, local tangent space analysis, local linear coordina-
tion, local linear embedding, hessian local linear em-
bedding, multilayer autoencoders, diffusion maps, iso-
map, linear discriminant analysis wavelet transform 
(LDA-WT), multidimensional scaling (MDS), Fourier 
transform (FT), and Laplacian eigen maps [38, 40, 41]. 
The effective image channels of the corresponding ef-
fective wavelengths are used in other image-pro-
cessing steps [20]. 

3. Biosystems applications 

In biosystems engineering, HSI and MSI have been ap-
plied to improve different activities in agriculture, nat-
ural resources, and the food sector because they com-
bine the advantages of infrared wave analysis in spec-
troscopy and area assessment in imaging technology. 
The applications of HSI and MSI in biosystems engi-
neering have been listed in Table 1. These applications 
were sorted by year. The effective wavelengths of sev-
eral types of research have been presented in this table. 
The effective wavelengths are those that better show 
the goals. This is due to the effects of the goals on the 
value of the selected near-infrared waves. 

Table 1 Applications of hyperspectral imaging in Biosystems Engineering. 

Material Purpose  Effective Wavelength (nm) Reference 

Pistachio ker-
nel 

Fungal infection 1090, 1280, 1700 [34] 

Pear fruit Ripeness  450 [42] 
Pomegranate 
fruit  

Titratable acidity, total solu-
ble solids, pH 

700-800-900-1000 [43] 

Orange fruit Green mold  500-800-900 [44] 
Fish Spoilage 488, 542, 576, 602, 626, 706, 764, 857, 951  [45] 
Fish Total volatile basic nitrogen  459,552,616,629,695,760,896,956,986 [46] 
Cucumber fruit Nitrogen content  715,783,821 [47] 
Apple fruit pH changes  Nine wavelengths from 650 to 950 [48] 

Apple fruit 
Total phenol, titratable acid, 
soluble solids content, pH 

450-4000 [49] 

Apple fruit Peroxidase activity changes 540, 547, 589, 606, 611, 619, 644, 694, 900 [50] 
Maize grain Variety  190-1150 [51] 

Orange fruit Bruises  
630,691,769,786,810,875/550-900,691-
769 

[52] 

Wheat flour Flour types  
601.33, 620.34, 696.41, 730.31, 821.26, 
841.11  

[53] 

Cinnamon 
powder 

Adulteration Nine wavelengths from 591.40 to 936.20 [8] 

In 2011, researchers used a hyperspectral imager with 
a spectral range of 350-2500 nm to capture the reflec-
tance of the leaves of different rice cultivars. They re-
ported that analysis of variance using Tukey’s paired 
test differentiated the reflectance of Nemat, Khazar, 
Neda, Fajr, Hybrid, Shiroudi, and Tarom leaves [54]. 
In 2012, fungal contamination (Aspergillus flavus) of 
pistachio kernels was detected. In this research, a snap-
shot imager (model: SU640-1.7RT-D Sensor Unlimited 
Inc., Princeton, NJ, USA) was used. The spectral range 
of the HSI systems was 960 to 1700 nm. The extracted 
features were classified using linear and quadratic dis-
criminant analysis, support vector machine, K-fold 
cross-validation, and artificial neural network methods 
to classify the samples with 70-100% accuracy [34, 55]. 
In 2017, Khodabakhshian and Emadi [42] used a line 
scan hyperspectral imager (model, DL-604M, Ireland) 
with a range of 425-1000 nm to classify the ripeness 
level of pear fruit. The researchers classified spectral 
data by applying linear discriminant analysis (LDA), 
partial least square-discriminant analysis (PLS-DA), 
and soft independent modeling of class analogy 
(SIMCA). They stated that the PLS-DA method had the 

highest accuracy (87.86%) in the classification of un-
ripe, ripe, and overripe fruits. Khodabakhshian et al. 
[43] used estimated chemical compositions of pome-
granate fruit. They used the partial least square method 
to analyze the spectral data. The properties were titrat-
able acidity, total soluble solids, and pH.  
In 2018, an area scan SCB-2000P Samsung (South Ko-
rea) hyperspectral imaging camera with a spectral 
range of 400-900 nm was used to detect green mold of 
orange. The researchers classified the extracted fea-
tures from the acquired hypercubes of healthy and in-
fected orange fruits using the artificial neural network 
with an accuracy of 96.84% [44]. 
In 2019, Khoshnoudi-Nia and Moosavi-Nasab [45] used 
a line scan hyperspectral imaging to assess fish spoil-
age. They captured HSI images from 430 to 1010 nm. 
The spoilage criteria were psychrotrophic plate count, 
sensory score, and total-volatile basic nitrogen. They 
obtained accuracies of 85.3 to 92.1% using the partial 
least-squares regression, least-squares support vector 
machine, back-propagation multiple-linear regression, 
and back propagation artificial neural network. Zolfi et 
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al. [56] used HSI and support vector machine to recog-
nize ground meats and reported an error range of 
11.56-19.66%. The studied meats were lamb, beef, and 
beef 70-lamb 30%. Hosseiny et al. [57] used the convo-
lutional neural network for the detection of different 
land regions and reported 92.35-98.14% accuracies. 
In 2020, Jaberi Aghdam et al. [58] applied outdoor mul-
tispectral imaging to monitor corn plant nitrogen. The 
researchers used unmanned aerial vehicles to acquire 
remote-sensing MSI images. They found a high correla-
tion between vegetation indices and nitrogen content 
and reported the potential of the method to detect ni-
trogen stress.  
In 2021, the highest HSI accuracy of 96.11% was re-
ported by Sabzi et al. [59] in the detection of nitrogen 
in cucumber plants. To this end, they applied hybrid 
neural networks and imperialist competitive algo-
rithms. Moosavi‑Nasab et al. [46] applied a line scan 
HSI (Opt Co., Kashan, Iran) at the range of 430-1010 nm 
to estimate nitrogen content in fish. They applied a lin-
ear deep neural network and support vector machine 
and reported higher accuracy of the SVM (89.7%). Zolfi 
et al. [60] used HSI to classify healthy and aflatoxin-
contaminated pistachio kernels. The levels of infection 
were low, medium, and high contamination. They emit-
ted 360 nm fluorescence light to the kernels.  
In 2022, Aslani [61] detected nitrogen content in to-
mato leaves using HIS and reported an accuracy of 
92.55% using artificial neural networks. Golmoham-
madi et al. [50] successfully estimated peroxidase ac-
tivity with an accuracy of 94% using an HSI system (Fa-
navaran Physics Co., Iran) at the range of 400-1000 nm 
and partial least squares method while 98.0% accuracy 
was obtained using the same methods in detection of 
apple pH [48]. Research conducted by Pourdarbani and 
Sabzi [47] focused on estimating nitrogen content in 
cucumber fruit using hyperspectral imaging. They em-
ployed a line scan HSI imager (Imantajhiz Co., Iran) and 
various machine learning techniques including the hy-
brid neural network-cultural algorithm, multilayer 
perceptron neural network, and support vector ma-
chine to predict nitrogen levels based on the HSI fea-
tures. They reported accuracies of 92.00, 78.97, and 
89.51%, respectively. In another study, Hashemi-
Nasab and Parastar [62] utilized 400-950 nm HSI to de-
tect adulteration in saffron spice. They mixed various 
substances rubia, calendula, turmeric, safflower, and 
saffron style with saffron. They successfully classified 
all samples by applying partial least squares-discrimi-
nant analysis. Alimohammadi et al. [51] employed HSI 
at a range of 400-1000 nm. Their findings indicated 
that linear discriminant analysis outperformed artifi-
cial neural networks, achieving an impressive accuracy 
of 95% in distinguishing maize varieties. Hasanzadeh 
et al. [49] employed the partial least squares method to 
analyze data acquired from an HSI system (FSR, Optical 
Physics Technologists, Tehran, Iran). They proved the 
high ability of the method in predicting titratable acid, 
soluble solids content, total phenol, and pH of apple 
(98.99-99.99%).  

In 2023, Bagheri et al., [63] used multispectral sensing 
using a UAV system to estimate the nitrogen content of 
corn in Varamin, Tehran. They reported that MSI pro-
vides accurate results to be used by the farmers in de-
termining the correct fertilizing time.  
In 2024, Nargesi et al. [64] detected adulteration levels 
of chickpea and wheat flour and sea foam powder in 
cinnamon powder using a line scan HSI imaging system 
(model Specam, Parto Sanat C., Zanjan, Iran) with a 
spectral range of 400-950 nm. The developed artificial 
neural network model classified 0, 5, 15, 30, and 50% 
adulteration levels of the mentioned adulterants with 
100, 100, and 98.9%, respectively. Pourdarbani and 
Sabzi [52] used 400-110 nm HSI for detecting sound 
and bruised orange samples and reported significant 
differences between the reflectance of the samples by 
applying Dunkan’s multiple range test. Molayi et al. 
[65] utilized a line scan HSI imager (model: AvaSpec-
2048) to assess various characteristics of sugar beet, 
including soluble solids, sugar content, moisture con-
tent, pH, and mechanical properties. By capturing HSI 
images at the 400-1100 nm range and applying least 
square regression for analysis, they achieved an im-
pressive accuracy of 95-98% in their estimations. 
Koochakzaei et al. [66] identified natural dyes and mor-
dant types in dyed wool fibers using spectral imaging 
methods. The researchers employed principal compo-
nent analysis and hierarchical clustering to distinguish 
different fibers based on mordants and dyes. They re-
ported that MSI at 430-830 nm had the best accuracy 
in clustering fiber groups. Ebrahimi et al. [67] approved 
the ability of remote sensing models to map degrada-
tion severity in Baluchistan using Sentinel-2 MSI data. 
Nargesi et al. [53] classified the efficient HSI features of 
wheat confectionery flour and the flours of Samoun, 
Sangak, and Tafton flours using 400-950 nm HSI 
(model: Specam, Parto Sanat C., Zanjan, Iran) and ma-
chine learning techniques. The classifier models were 
based on artificial neural networks, support vector ma-
chine, and linear discriminant analysis methods. The 
researchers reported that artificial neural network had 
higher accuracies compared to other methods using ef-
ficient features (98.1%) than all features (96.9%). 
In 2025, Nargesi et al. [68] employed hyperspectral im-
aging to detect different adulterations black pepper 
powder. The adulterants were sea foam and chickpea 
and wheat flours with 0–50 % levels. The wavelength 
selection, feature selection, and classification were 
done using principal component analysis, sequential 
feature selection, artificial neural networks methods. 
The researchers suggested the technique to detect 
adulteration levels (100% accuracy). Nargesi and 
Kheiralipour [69] classified different levels of potassium 

oxide in potash fertilizer using hyperspectral imaging tech-

nique. The reported that the classifier model based on arti-

ficial neural networks method had relative higher effi-

ciency using all extracted features (92.9%) compared to se-

lected efficient features (91.3%). Nargesi and Kheirali-
pour [70] predicted the sucrose, proline, ash, and fruc-
tose/glucose ratio of date syrup using hyperspectral 
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imaging and partial least squares regression, support 
vector regression, and artificial neural networks meth-
ods. Artificial neural networks had higher performance 
compared to others with the prediction accuracies of 
99.99, 100, 99.99, and 100 %, respectively. 

4. Conclusions 

Infrared spectral imaging covering HSI and MSI tech-
niques has been applied to assess different goals in ag-
riculture, natural resources, and food sectors in Iran. 
HSI and MSI methods are widely applied to assess dif-
ferent external and internal goals with high accuracy 
and low cost. As non-destructive techniques, they allow 
for studying near-infrared reflectance of full area of ob-
jects in different fields. The methods are more applica-
ble compared to conventional visible imaging due to 
studying not only the infrared domain but also working 
in the visible range. Moreover, the accuracy of the tech-
niques can be enhanced by applying and evaluating dif-
ferent methods to process and analyze spectral images. 
HSI and MSI techniques have been used for assessing 
different goals in agriculture, natural resources, and 
food in Iran. Soil, water, plants, fruits and vegetable, 
and food products are the main materials that have 
been assessed by the techniques. However, the meth-
ods have not been applied in animal and fishery sectors 
that can be considered in the future, e.g., evaluating an-
imal feed, detecting body status and diseases, and as-
sessing animal products. Future research may focus on 
increasing the accuracy of the methods. Moreover, real-
time and online applications of MSI can be considered 
in the future due to the higher speed of image acquisi-
tion in MSI technique to acquire the image channels in 
just effective wavelengths. 
In the future, the techniques can be been utilized in an-
imal production [71] to assess body [72], feed quality, 
and welfare of livestock [73]. The techniques have been 
applied in natural resources for assessing wild animals 
living, land use, and sea environment [18, 74-76] that 
can be considered in future research and applications 
in Iran. These methods can be applied in precision ag-
riculture to increase the accuracy and decrease the cost 
of detecting different goals such as plant and product 
diseases, by indoor or outdoor imaging systems. 
HSI technique has a limitation due to the time-consum-
ing hypercubes acquiring step because many image 
channels at whole covered wavelengths be the imagers 
are recorded. So, the method technique is applied in la-
boratory-scale research. For real-time and online ap-
plications, MSI can be developed based on the HSI re-
sults. In Fact, MSI decreases imaging time by acquiring 
just image channels corresponding to the effective 
wavelengths. Also, image processing is a faster step 
compared to HSI because the efficient features of just 
the effective wavelengths are extracted and analyzed. 
Moreover, future developments are appreciated to in-
crease the image-acquiring speed in HSI and MSI. These 
findings indicate the potential for developing an ad-
vanced multi-product imaging system that utilizes hy-

perspectral and multispectral image processing tech-
nologies for precise sample analysis. By leveraging 
spectral data processing algorithms, this system can ef-
fectively identify and classify various product features. 
Furthermore, the development of a real-time system 
for industrial applications can significantly reduce de-
tection time while enhancing the accuracy of quality 
control processes. Such a system can be applied across 
various industries, including agriculture, food, and 
pharmaceuticals, playing a crucial role in optimizing 
production processes and minimizing waste in Iran. 
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