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Abstract 
Over the past decade, educational neuroscience research has increasingly identified the functional con-
nectivity between the ventral striatum (VS) and the prefrontal cortex (PFC) as a significant biomarker 
for intrinsic motivation in adolescent students. Despite these findings, there remains a dearth of meth-
ods for utilizing such connectivity indices to directly measure intrinsic motivation levels in educational 
settings. With the aims of informing educational and cognitive neuroscience researchers of intrinsic 
motivation about new technical ideas that can advance their research, this opinion paper presents an 
overview of the most important neuroscientific research on intrinsic motivation in human youths to-
gether with a new methodological proposal. Crucially, we proposed the use of VS-PFC functional con-
nectivity signals, extracted from functional magnetic resonance imaging (fMRI) data analysis, as predic-
tors of intrinsic motivation through a machine learning (ML)-based linear regression model. By devel-
oping a robust linear regression model buttressed by tried-and-tested ML techniques, our method aims 
to facilitate rapid and precise predictions of intrinsic motivation levels without the need for repeated 
assessments of intrinsic motivation, thereby saving time and resources in subsequent studies. To eluci-
date our model, we presented equations showing how regression parameters are computed using the 
conventional ordinary least squares (OLS) method and the ML-based gradient descent (GD) method, 
highlighting their differences in the process. Potential technical difficulties concerning the establish-
ment and validation of our ML-based model are also discussed with concrete recommendations on how 
to resolve them. With the right implementation, we expect our method to benefit longitudinal fMRI 
studies examining developmental brain and behavioral changes in intrinsic motivation and educational 
intervention programs that require quick and accurate identification of students’ intrinsic motivation 
levels. Also noteworthy is that our proposed methodology is not limited to predicting intrinsic motiva-
tion alone and can be adapted for other functional connectivity and behavioral variables that may pre-
dict different outcome variables. The flexibility of our ML-based regression model will allow research-
ers to tailor the model by selecting alternative variables to suit their specific research needs. 

Keywords Artificial intelligence, machine learning, gradient descent, intrinsic motivation, functional 
connectivity, prefrontal cortex, ventral striatum 

1. Introduction 

In the psychological literature on human development 
and education, Self-Determination Theory (SDT), as 
proposed by Ryan & Deci [1], was notable for defining 
motivation as a two-sided dispositional trait that takes 
on intrinsic and extrinsic dimensions. According to SDT, 
intrinsic motivation refers to the disposition to engage 
in a specific activity for the sake of extending and 

exercising one’s skills and abilities, and for learning 
and self-discovery, rather than for the purpose of pur-
suing external or material rewards. As for extrinsic mo-
tivation, it relates to an externally driven incentive to 
engage in an activity because of the tangible rewards it 
can bring or is expected to bring. Importantly, respect-
ing and supporting an individual’s psychological needs 
for autonomy (freewill to pursue an activity), 
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competence (capability to perform an activity to the 
best of one’s ability), and relatedness (social ties with 
supportive individuals) provide the fertile grounds for 
the optimal development of intrinsic motivation [1]. In 
this article, the theoretical focus would be on intrinsic 
motivation in view of a large body of accumulating evi-
dence in psychology and cognitive neuroscience show-
ing that it is intrinsic motivation, not extrinsic motiva-
tion, which brings about positive effects for learning 
and mental well-being in the long run (for reviews, see 
[2-4]). When compared with individuals driven by ex-
trinsic motivation, individuals driven by intrinsic moti-
vation have been found to exhibit higher magnitudes of 
learning and performance, creativity, and emotional 
experience over longer stretches of time [2]. Con-
versely, extrinsic motivation contingent on monetary 
rewards has been shown to undermine an individual’s 
intrinsic motivation to engage in cognitive perfor-
mance to the best of his/her ability in the long-run [5]. 
Biologically, it is also worthy to note that a functional 
magnetic resonance imaging (fMRI) study by Lee et al. 
[6] has shown that intrinsic and extrinsic motivation 
can be physiologically separated from each other based 
on double-dissociation findings, which showed that 
higher insula activation was connected more with in-
trinsic motivation than with extrinsic motivation 
whereas higher posterior cingulate activation was tied 
more to extrinsic motivation than to intrinsic motiva-
tion. 
The past few decades have witnessed a fruitful applica-
tion of SOT to the scientific study of motivation in the 
cognitive neuroscience of education domain [4, 7], a 
discipline that has been popularly called “educational 
neuroscience” [8]. As such, in the sections below, we 
chose to highlight some of the most important fMRI 
studies on learning motivation in the educational neu-
roscience literature. Owing to the fact that the vast ma-
jority of them focused on intrinsic motivation, we chose 
to review the brain regions, pathways, and functional 
characteristics underlying this motivational construct. 
Specifically, we focused on fMRI studies showing the 
prominence of the functional connectivity between the 
ventral striatum (VS) and the prefrontal cortex in the 
sustenance of intrinsic motivation – and proposed how 
this VS-PFC connectivity can be harnessed as a neuro-
physiological predictor for an automated machine 
learning (ML)-based computation of intrinsic motiva-
tion scores for future samples of participants. In this re-
gard, the current article is intended as an opinion paper 
seeking to inform researchers with a vested interest in 
intrinsic motivation about some exciting new ideas (i.e., 
concepts and methods) that can better shape the tra-
jectories of their future studies.  
In the sections below, we first provide a mini-review of 
the most well-known and cited fMRI studies on intrin-
sic motivation before explaining the purpose of our ML-
based method. Please note that our review is not in-
tended to be exhaustive as this article is not meant as a 
formal review paper. Rather, we want to stimulate 
thinking among both educational and neuroscience 

researchers, update them about some of the state-of-
the-art techniques that they can leverage in the current 
digital age, and encourage them to use such trendy 
tools to elevate research development in the educa-
tional neuroscience field. 

2. Insights from educational neuroscience 

In the extant educational neuroscience literature, re-
ward-based cognitive processes associated with moti-
vation are functionally mediated by the circulation of 
the neurotransmitter dopamine along the frontostria-
tal neural pathways connecting the prefrontal cortex 
(PFC) with the subcortical limbic system. Two well-
known dopaminergic pathways, the mesolimbic and 
mesocortical pathways, each of which connects the 
ventral tegmental area (VTA) to the striatum and PFC, 
respectively, enable the effective channeling and re-
lease of dopamine in the presence of any stimuli that is 
perceived as rewarding or motivational [9] [see Figure 
1]. Notably, the ventral striatum (VS), which comprises 
the nucleus accumbens, the olfactory tubercle, and 
parts of the caudate nucleus and putamen ventral to the 
rostral internal capsule [10], has long been observed as 
a core node involved in the execution of motivation-re-
lated reward-driven behaviors [9, 11].  
Both the VS and the PFC are major brain regions inner-
vated by dopaminergic neurons emanating from the 
lower mid-brain areas (e.g., VTA, substantial nigra) 
[12-15]. In this article, we chose to focus on VS-PFC 
functional connectivity and not merely on blood-oxy-
gen-level-dependent (BOLD) activation localized to the 
VS because elevated VS BOLD activation is context-de-
pendent and can either reflect a source of opportunity 
associated with positive behaviors/rewards (e.g., aca-
demic motivation, healthy peer relations) [9] or a 
source of vulnerability associated with negative behav-
iors/rewards (e.g., risky sexual behaviors, negative 
peer influence) [9, 16]. Such contextual variability in 
the interpretation of VS BOLD activation does not apply 
to VS-PFC functional connectivity, which has been 
shown to exhibit a positive and linear relationship with 
intrinsic motivational behaviors across numerous con-
texts – as the following paragraphs will explain. This 
unique feature of VS-PFC functional connectivity would 
thus greatly ease statistical analysis and interpretation 
when a linear regression model is applied, as proposed 
in the sections below. 
Another reason for investigating VS-PFC functional 
connectivity is that it is engendered by a plethora of 
neuroanatomical pathways (i.e., neural fibers) consti-
tuting the “reward circuit” linking different subregions 
of the PFC with the VS via the thalamus, which func-
tions as a relay hub [17]. In the developmental neuro-
science literature, the PFC has been widely seen as the 
“chief executive” of a top-down cognitive control sys-
tem or network that mediates executive functioning 
and decision-making in posterior and subcortical parts 
of the brain [9, 16, 18]. The PFC has also been shown to 
be involved in the processing of self-efficacy beliefs re-
lated to academic performance in the form of 
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significant positive correlation between functional ac-
tivity in the medial PFC (mPFC) and self-reported rat-
ings of self-efficacy beliefs related to academic matters 
[19]. Under general academic situations concerning 
whether to engage in a motivational task or not, the in-
sula is another PFC subregion that was shown to be 
highly activated when individuals were processing 
their subjective feelings and reasons to act [6]. In the 
more specific context of cognitive learning and perfor-
mance, when compared with their counterparts with 
lower levels of intrinsic motivation, college-aged 

students with higher levels of intrinsic motivation have 
been shown to exhibit increased VS-PFC functional 
connectivity over three task blocks when assessed us-
ing a computerized Go/No-Go test of inhibitory control 
[20]. Change in false alarm rate on the Go/No-Go test, a 
measure of cognitive performance decline, also showed 
a significant negative linear relationship with change in 
the strength of VS-PFC functional connectivity within 
the full sample of participants [20]. 
 

 

Figure 1 A schematic diagram showing two dopaminergic pathways (mesocortical and mesolimbic) and the associated brain 

regions where dopamine is generated and received. Double headed light blue arrows depicts the functional connectivity be-

tween the ventral striatum (VS, circled in dark blue) and the prefrontal cortex (PFC, circled in red) [Source: Figure 1 in Telzer 

[9]. Adapted and reproduced with permission. Dotted circles and double-headed arrows were added to the original figure by 

the first author.] 

In addition, through an analysis of resting-state func-
tional brain connectivity in young female adolescents 
(mean age = 11.2 years), Myers et al. [21] further 
showed that self-reported questionnaire scale scores of 
a growth mindset underpinned by intrinsic motivation 
(i.e., the belief that one can “grow” his/her intelligence 
through hard work and dedication) were positively 
correlated with the degree of functional connectivity 
strength between the VS (centered on the left and right 
nucleus accumbens) and the right dorsolateral pre-
frontal cortex (dlPFC). On the other end, there were 
also studies which showed that excessive smartphone 
usage among adolescents could lead to diminished VS-
PFC functional connectivity [16, 22]. Such findings sug-
gested that the VS-PFC pathway is highly crucial for 
top-down cognitive control and any impairment or dis-
ruption can result in negative behaviors that are driven 
by external rewards. 
Taking into account all these studies, which provided 
replicable evidence of the crucial role played by VS-PFC 
functional connectivity in pinpointing the intrinsic mo-
tivation levels of adolescents and young adults, we 
hereby propose the use of a VS-PFC functional connec-
tivity variable, representing the parameter estimates of 
signal intensities emanating from a target PFC region 
coupled with a seed VS region, as a sensitive neuro-
physiological predictor of intrinsic motivation levels in 
future samples of human participants. Although the 
aforementioned studies demonstrated that the 

strength of VS-PFC functional connectivity was posi-
tively and significantly correlated with one’s intrinsic 
motivation level under different contexts [9, 20, 21], 
they did not argue for the use of VS-PFC connectivity 
signals as predictors of intrinsic motivation perfor-
mance in future replications or extensions of their 
studies.  
This endeavor can only be achieved using ML-based 
linear regression and a technical overview of this 
highly efficient computational method is presented in 
the sections below. 

3. Purpose of new method 

Before discussing how ML-based regression modelling 
is done, we deem it important to state that the impetus 
for the proposed new method is driven by a call to 
translate neuroimaging findings, especially those from 
fMRI, into feasible applications for educational re-
search and practice [8]. Seghier et al. [8] identified a se-
ries of challenges in the translation of fMRI findings 
into practical applications within educational settings 
and through our proposed new method, we aim to ad-
dress several of these challenges – that is, how to better 
(i) investigate heterogenous cohorts of individuals 
with varying learning abilities, (ii) assess changes in 
brain functions related to the development of such abil-
ities, and (iii) conserving research resources related to 
longitudinal studies. Specifically, we advocate an active 
use of correlational patterns of brain activations for 
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making predictions about intrinsic motivation at the in-
dividual level, ensuring that valuable fMRI data is used 
with greater utility in a prospective fashion. Conse-
quently, longitudinal fMRI studies on intrinsic motiva-
tion following up on an initial fMRI study conducted us-
ing the same protocol can be done much faster. Educa-
tional intervention programs seeking to recruit and 
compare students with varying levels of intrinsic moti-
vation can also be conducted more swiftly with speed-
ier identification of such individuals using our predic-
tive model.  
In our model, we will use VS-PFC connectivity as the 
primary predictor of intrinsic motivation due to its 
neurophysiological nature and origins in the brain. As 
such, this variable can offer a more sensitive and non-
biased measure of intrinsic motivation compared to 
non-physiological variables, such as self-reported 
questionnaire ratings or cognitive test scores. By pro-
posing a new ML-based regression method, we build on 
the significant contributions made by developmental 
and educational neuroscientists who have linked VS-
PFC connectivity to intrinsic motivation (as mentioned 
above). Our goal is to develop this foundation and ad-
vance motivation-related research by leveraging the 
best computational techniques offered by artificial in-
telligence (AI). 
In addition, due to the fact that intrinsic motivation as-
sessments can be difficult to design and time-consum-
ing to execute, we expressed our methodological ideas 
herein with the purpose of facilitating rapid and pre-
cise predictions of participants’ intrinsic motivation 
levels in future studies. The following sections will elu-
cidate these ideas through the validation and testing of 
a ML-based linear regression model. As this article is 
not a research paper, we did not provide experimental 
data and results to establish the regression parameters. 
However, this lack of proof does not, in any way, imply 
that our proposed method is erroneous or flawed, but 
that it serves as a “call to action” for investigators in fu-
ture studies to test our ideas and assess their merit. As 
the statistical model-building process outlined below is 
based on rigorous, tried-and-tested mathematical for-
mulas and principles, we guarantee the lay reader that 
our method would work to generate the required re-
gression parameters for predictive analysis contingent 
on the availability of research data from a future sam-
ple of participants.  

4. ML-based linear regression modelling 

Linear regression is a highly used statistical technique 
used in numerous academic fields for predicting the 
value of a continuous outcome variable (𝑦) using one 
(𝑥) or more predictor variables (𝑥1 + ⋯ + 𝑥𝑗) by fitting 

a linear equation to the observed data (see Equation 1). 
The goal is to find the best-fitting line that minimizes 
the difference between the predicted and observed 
outcome values. In the simplest case with only one pre-
dictor, the model is written algebraically as:  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝜖𝑖 (1) 

where 𝑦𝑖  represents the observed outcome value for 
the ith individual and 𝑥1𝑖  represents the value of the 
first predictor for the ith individual. 𝛽0  represents the 
intercept of the line with the y-axis, 𝛽1 represents the 
regression slope or coefficient, and 𝜖𝑖  represents the 
error term (i.e., residual) that represents the difference 
between the predicted and observed y values for the ith 

individual. 
When dealing with two or more predictors, the model 
is written as: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖 (2) 

where 𝛽1  through 𝛽𝑗  represent the regression coeffi-

cients associated with the first predictor up to the jth 
predictor. The subscript of “i” represents the value as-
sociated with a particular individual, as shown in equa-
tion (1) above. 
In linear regression, the primary objective is to find the 
intercept (𝛽0)  and regression coefficients ( 𝛽1  to 𝛽𝑗 ) 

that minimize the loss function (𝐿) of mean squared er-
ror (MSE) between the observed (𝑦𝑖) and predicted (𝑦�̂�) 
outcome values over n observations [23]:  

𝐿 = MSE =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

(3) 

The conventional method for finding the regression co-
efficients is through the ordinary least square (OLS) 
technique using the formula:  

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 (4) 

Based on this formula, the matrix of predictor variables 
(with a column of ones to represent the intercept) (𝑋) 
is first multiplied with its transposed counterpart (𝑋𝑇) 
to generate a matrix product that gets inversed and 
multiplied further with 𝑋𝑇  and the vector of observed 
outcome values (𝑦) to output the vector containing the 
regression coefficients and intercept ( 𝜷 ) [24]. This 
computation is carried out by default when one exe-
cutes linear regression using most statistical packages 
(e.g., SPSS, STATA) and provides the analyst with a sin-
gle set of intercept and regression coefficient values. 
For foundational mathematical details of linear regres-
sion and proofs of OLS formula, the reader is advised to 
the statistical handbook by Gelman et al. [24] [open ac-
cess version available via URL under its reference]. 
The OLS technique is perfectly suitable for examining 
the linear relationship between the predictor and out-
come variables within a given sample but may be insuf-
ficient for predicting outcome values in future samples 
if the model parameters (i.e., the regression coefficients 
and intercept) are not calibrated carefully for generali-
zation purposes. In view of this concern, ML-based re-
gression through gradient descent (GD) is called for. 
Unlike OLS, which works in the form of a closed for-
mula that finalizes results after a single computational 
cycle, GD is an iterative differential technique that re-
fines the regression model through multiple iterations 
to find the optimal intercept and regression coefficients 
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that minimize the loss function (i.e., MSE) to the largest 
extent possible [23].  
Specifically, GD works in linear regression by updating 
an initial set of regression coefficient and intercept val-
ues through partial differentiation using the following 
formulas: 

𝛽𝑗 ← 𝛽𝑗 − 𝛼
𝛿𝐿

𝛿𝛽𝑗

(5) 

𝛽0 ← 𝛽0 − 𝛼
𝛿𝐿

𝛿𝛽0

(6) 

where L denotes the loss function shown in equation 
(3), with 𝛽𝑗  and 𝛽0 on the left of the leftward pointing 

arrow representing the updated regression coefficient 
for the jth predictor and the updated intercept, respec-
tively. 𝛼 represents the learning rate, a hyperparame-
ter that can be set in advance by the analyst to control 
the size of each update.  
Following the first iteration, the regression coefficients 
and intercept are updated by subtracting the partial de-
rivatives (multiplied by the learning rate) from their 
current values. These updated values are then rein-
serted into the regression model shown in equation (2), 
followed by the computation of a new set of partial de-
rivatives using equations (5) and (6). This process is re-
peated, with the regression coefficients and intercept 
being recomputed again at the end of the second itera-
tion. The cycle continues until convergence is reached, 
that is, when there are negligible or no changes in the 
regression coefficient and intercept values. The con-
stant value of the learning rate and the initial values of 
the regression coefficients and intercept (usually zeros 
for both), as well as the number of iterations (usually 
10,000 or more), must be set by the analyst in advance. 
The total number of iterations required for conver-
gence depends on several key factors, such as sample 
size, the number of predictors, learning rate, and mul-
tivariate normality [23]. For more details concerning 
GD, such as the programming codes and software to im-
plement it, the reader is advised to refer to the online 
eBook by Burkov [23] [see URL under its reference]. 
For all mathematical formulas and explanations herein, 
please note that we presented them in the simplest 
form possible for a non-technical audience. For basic 
information about the fundamentals of linear regres-
sion and matrix algebra, we advise the reader to peruse 
relevant statistical works, such as the eBooks by 
Burkov [23] and Gelman et al. [24] cited above. 

5. A proposed case study of ML-based linear re-
gression at work 

With all these technical knowledge in mind, we now in-
troduce a framework of how ML-based linear regres-
sion, which harnesses GD, could be applied to future 
studies investigating the relevance of VS-PFC func-
tional connectivity for intrinsic motivation. To do so, 
we will refer to a previous fMRI study conducted by 
Telzer et al. [20] as a starting point. In that study, the 
authors performed functional connectivity analysis in 

the form of psychophysiological interaction (PPI). 
Through this technique, the authors identified the tar-
get PFC regions-of-interest (ROIs) whose task-depend-
ent hemodynamic functions (HRFs) covaried with the 
HRF-deconvolved time series of the ventral striatum, 
which serves as the seed ROI. Based on ROI-to-ROI con-
nectivity analysis, the authors identified a cluster in the 
inferior frontal gyrus (IFG), centered around the stand-
ardized xyz coordinates of (40, 28, -5), as the target ROI 
that was functionally coupled with the VS beyond the 
voxel-wise significance threshold of p = 0.005. Based on 
a full sample of 29 participants, changes in VS-IFG con-
nectivity strength (between the first and third task 
blocks) were found to be negatively and linearly corre-
lated with corresponding changes in successful Go/No-
Go task performance [r = -0.53, p < 0.005]. 
This brain-behavior correlation can also be repre-
sented in a linear regression model, with the predictor 
being the change in parameter estimates of fMRI signal 
intensities in the target IFG region between the first 
and final trial block, and the outcome variable being the 
change in false alarm rate, the percentage of incorrect 
responses on No-Go trials, between the first and final 
trial block. In equation form, the model can be repre-
sented nominally as:  

∆ Observed Go/No-Go false alarm rate (%) =

𝛽0 + 𝛽1 ∗ ∆ VS-PFC connectivity + 𝜖𝑖 (7)
 

In the case of Telzer et al.’s [20] study, 𝛽1 in equation 
(7) will approximate the full sample correlational value 
of -0.53. Since only one predictor is used, its regression 
coefficient will be approximately equal to this correla-
tional value. 
Depending on the fMRI scanning protocol used, future 
investigators may also want to break down a scan run 
into several trial blocks, as done by Telzer et al. [20], or 
keep it intact as one block to ease data analysis. If the 
former option is chosen, then the predictor and out-
come variables would need to be converted into differ-
ence values conveying changes in behavioral perfor-
mance and VS-PFC connectivity between the start and 
final task blocks, as shown in equation (7). If not, the 
raw Go/No-Go performance and VS-PFC connectivity 
values can be used to simplify matters.  
For any future fMRI study involving the Go/No-Go task 
and VS-PFC connectivity, the goal should not be about 
replicating Telzer et al.’s [20] fMRI experiment in order 
to establish the single-predictor regression model 
shown in equation (7), but to establish a new regres-
sion model with multiple predictors and a new out-
come variable representing intrinsic motivation. This is 
because the VS-PFC connectivity variable shown in 
equation (7) is a task-dependent variable that is tied to 
performing the Go/No-Go task. Without performing 
the Go/No-Go task, this variable would cease to exist 
and the computation of any regression coefficient tied 
to it would be impossible. Hence, creating any regres-
sion model with the behavioral performance on the 
Go/No-Go task being the outcome variable would not 
carry any predictive value since the same task would 
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have to be performed during fMRI in any future exper-
iment. Consequently, we propose a multiple linear re-
gression model that includes Go/No-Go task perfor-
mance as a covariate or control variable entered along-
side a primary predictor of VS-PFC connectivity. This 
model will have performance on an intrinsic motiva-
tion task (IMT_perf) as the outcome variable and is 
shown nominally in the equation below: 

IMT_perf = 𝛽0 + 𝛽1 ∗ VS-PFC connectivity

+𝛽2 ∗ Go/No-Go false alarm rate (%)

+𝜖𝑖 (8)
 

where 𝛽1 and 𝛽2 denote the regression coefficients tied 
to the observed VS-PFC connectivity signals generated 
from Go/No-Go task performance and the observed 
false alarm rate on the Go/No-Go task, respectively. 
With respect to the IMT, we have no particular prefer-
ences and recommend it to be any task that involves 
making decisions or responses concerning intrinsic 
motivation. In line with a previous proposal by Zhong 
[25], this task can be either a behavioral task requiring 
visuomotor responses or a questionnaire that assesses 
one's intrinsic motivation to learn and improve in a 
specific activity of interest. Specially, for a behavioral 
measure of intrinsic motivation, one can use a task that 
require them to exercise their free will to learn about 
the responses taken by others concerning a certain ac-
tivity [26] or a task that assesses their persistence in 
performing a highly challenging cognitive task in the 
absence of monetary rewards [25]. As for question-
naires, one can consider the Intrinsic Motivation Inven-
tory [27, 28], a classical and well-recognized self-report 
tool for assessing an individual’s motivation to engage 
in an activity of interest by measuring seven dimen-
sions of intrinsic motivation. For educational research 
on intrinsic academic motivation among adolescents 
and young adults, one can consider the Academic Moti-
vation Scale [29, 30] and (ii) Internalization of Learning 
Motivation Scale [31], both of which assess a student’s 
motivation to work hard and excel in academic activi-
ties. Depending on the research question(s) at hand, a 
relevant subscale score can be taken from any of these 
three questionnaires for use as an outcome variable.  
Taken together, the examples cited are just a small 
sample of the potential IMTs future investigators can 
use and we encourage innovation and creativity in the 
design of new IMTs. Ideally, any IMT used should ex-
hibit significant correlation with the Go/No-Go task in 
a preliminary pilot experiment before being used for-
mally in an fMRI experiment. Doing so would lower the 
risks of failure and increase the likelihood of finding a 
significant VS-PFC connectivity coefficient in the multi-
ple regression model shown in equation (8). 
In the event that a new IMT is designed and shown to 
correlate significantly with the Go/No-Go task, a new 
fMRI experiment can be conducted with participants 
performing the Go/No-Go task in the fMRI scanner. The 
false alarm rate on the Go/No-Go task, the VS-PFC con-
nectivity signals recorded while performing this task, 
and performance on an IMT measured by a suitable 

metric, will then be recorded for each participant for 
entry as variables into the model shown in equation (8). 
Following this, ML-based regression using GD can be 
employed to determine the optimal values for the in-
tercept and regression coefficients. To facilitate this 
process, note that the variables can be normalized to a 
standard range (see section below, for details). 
Assuming all parameters in the multiple regression 
model are found to be significant, they can be applied 
in a second future experiment involving fMRI scanning 
using Go/No-Go task to compute estimates of IMT per-
formance. In this case, re-administering the IMT will be 
unnecessary, since the most accurate regression pa-
rameters, derived through GD, will be used to predict 
IMT performance. Accordingly, a lot of time and effort 
can be saved. 
By using a well-established regression model to predict 
participants’ levels of intrinsic motivation instead of 
assessing them repeatedly using the same IMT, the 
time and resources spent on data collection can be 
more effectively reallocated to data analysis and inter-
pretation. For an example, if a future need arises to de-
velop an intervention program aimed at boosting in-
trinsic motivation in students, particularly among 
those with lower motivation levels, our ML-driven ap-
proach will be particularly useful for expediting the 
identification of suitable candidates for the program. 
Another example will apply to longitudinal fMRI stud-
ies investigating how developmental brain changes af-
fect intrinsic motivation [25]. By using a ML-based re-
gression model, follow-up fMRI studies can shorten the 
experimentation time by requiring returning partici-
pants to undergo only fMRI scans with the Go/No-Go 
task. Using the model, subsequent IMT performance for 
these participants can be predicted with ease through 
the recorded VS-PFC connectivity signals and Go/No-
Go task performance scores. 

6. Important technical considerations 

In order to implement the ML-based regression model 
we proposed successfully, it is quite understandable 
that one would encounter some doubts and technical 
difficulties. Such challenges can concern issues such as 
data preparation, sample size, and participant charac-
teristics. In this section, we will discuss some of the 
most important matters that future investigators ought 
to be explicitly aware of and the specific steps to man-
age them.  

6.1 Data preparation: Variable selection and nor-
malization 

In the regression model shown in equation (8), there is 
only one predictor for VS-PFC connectivity. Consider-
ing that the PFC is a voluminous brain region that com-
prises many subregions with different functions, one 
may query about the ways in which the target PFC re-
gion should be selected and if more than one subregion 
can be chosen. Our recommendation is to select a target 
PFC subregion that exhibits the highest and most sig-
nificant signal intensity in its functional coupling with 
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the seed VS region, as done previously by Telzer et al. 
[20]. If there are more than one PFC subregion exhibit-
ing significant functional coupling with the VS, the PFC 
subregion with the highest signal intensity should be 
chosen. Although it is all right to create two or more VS-
PFC connectivity predictors in the aforementioned sce-
nario (e.g., a VS-IFG connectivity predictor and a VS-
dlPFC connectivity predictor), we do not recommend 
the use of multiple VS-PFC predictor simply because 
the sample size required for training and validating the 
ML-based regression model would have to be in-
creased with each additional predictor – by at least 20 
participants for a model exhibiting a medium-sized ef-
fect [32]. Unless one has a lot of research personnel and 
monetary resources, we do not recommend the fMRI 
scanning of additional participants simply to satisfy the 
insertion of additional predictors into the model. In-
stead, what we recommend is a resource-efficient ana-
lytical approach that combines significant PFC clusters 
into a bigger ROI and testing whether that ROI demon-
strates significant functional coupling with the VS. If 
the outcome is positive, then the signal intensity pa-
rameter estimates from this combined ROI will repre-
sent the values of the single VS-PFC connectivity pre-
dictor used in the model. 
In the same vein, one can query about the right way for-
ward if there are multiple outcome variables derived 
from the use of several IMTs. In this scenario, should 
one train multiple ML-based regression models, each 
with a unique outcome variable? Our answer to this 
question is a staunch “no” since doing so would create 
lots of regression coefficients with different values for 
the same predictors, a process that would culminate in 
confusion during data analysis and interpretation in fu-
ture studies. The right path forward, in our opinion, is 
to normalize the values of each IMT performance vari-
able into a standard range of [0, 1] and average these 
normalized values to compute a composite IMT perfor-
mance variable that represents the mean performance 
over all IMTs. Assuming that “0” represents the lowest 
score achieved on an IMT and “1” represents the high-
est score achieved, the normalization formula to be ap-
plied will be the following:  

𝑣′ =
𝑣 − min(𝑣)

max(𝑣) − min(𝑣)
(9) 

where 𝑣′  denotes the normalized version of the varia-
ble 𝑣, min(𝑣) denotes the minimum value of 𝑣 attained 
by a participant within a sample, and max(𝑣) denotes 
the maximum value of 𝑣  attained by a participant 
within the same sample.  
In the event that we want “0” to represent the highest 
score achieved and “1” to represent the lowest score 
achieved, as in the case of the Go/No-Go task, in which 
lower false alarm rate represents more accurate per-
formance, and vice versa, the normalization formula to 
be applied will be the following:  

𝑣′ =
max(𝑣) − 𝑣

max(𝑣) − min(𝑣)
(10) 

Equation (10) is noteworthy because performance on 
psychological tests can be assessed using negative indi-
cators of performance and thus it is important to re-
verse this trend when computing the normalized 
scores for such indirect measures. More importantly, in 
the event where there is a mix of positive and negative 
measures, we will always recommend the default nor-
malization for the positive measure [equation (9)] and 
the reverse normalization for the negative measure 
[equation (10)]. In this way, higher values on each var-
iable can be interpreted as indicative of greater repre-
sentation of the feature of that variable, lessening the 
chance for inaccuracy or confusion during data analysis.  
In addition, one must be aware that we recommend the 
use of normalization not just for the computation of 
composite variables, but for its extension to all varia-
bles. If an outcome variable is normalized, the predic-
tor variables must be normalized as well. This normal-
ization procedure is extremely important in the context 
of ML because having a smaller range of numerical val-
ues to work with will lead to more precise and faster 
convergence. By normalizing all predictors variables to 
the same range of [0,1], we will eliminate the possibili-
ties for large partial derivatives belonging to predictors 
with higher values and longer ranges to dominate the 
update of the regression coefficients during each GD it-
eration, a process that can result in non-optimal pa-
rameters computed at the end of GD [23]. We will also 
eliminate the problem of numerical overflow (i.e., re-
setting large values beyond a finite range that can be 
stored to zero) that can happen during GD through the 
entry of large numerical values [23]. 
In summary, for the purpose of computational effi-
ciency and ease of result interpretation, we recom-
mend the training and validation of our ML-based re-
gression model according to the following equation:  

IMT_perf
η

= 𝛽0 + 𝛽1 ∗ VS-PFC connectivity
η

+𝛽2 ∗  Go/No-Go Accuracy
η

+𝜖𝑖 (11)

 

where the subscript of η denotes default normalization 
with “0” representing the lowest value achieved and “1” 
representing the highest value achieved. Note that the 
false alarm rate from the Go/No-Go task is converted 
into its reverse normalized form representing perfor-
mance accuracy using equation (10). 

6.2 Sample size for model assessment 

With this understanding of variable selection and nor-
malization, the next task is to figure out the optimal 
sample size to assess our model. To do so, we per-
formed a power analysis using G*Power version 3.1.9.4 
[33], and found that the sample size for obtaining a 
power of at least 80% with a medium effect size (R2) of 
0.15 at the default alpha level of 0.05 for a regression 
model with two predictors to be 60. This is a conserva-
tive estimate given that we did not specify a high effect 
size (R2 ≥ 0.25) and would prefer future investigators 
to collect a sizeable number of participants to avoid the 
commission of Type I errors.  
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Hence, we recommend future studies to recruit around 
60 participants for model assessment, a process which 
would involve cross-validation in ML terms. This 
means that the collected sample would be divided into 
a training subset and a testing subset in a pre-set ratio, 
with more participants in the former group than in the 
latter group. In line with a recent ML study [34], this 
ratio can be set at 4:1, meaning that 48 participants will 
be randomly selected for training the model, and the 
remaining 12 participants be used for testing the model. 
The data-splitting process can be repeated multiple 
times for up to 20 times [34] to ensure that the regres-
sion parameters are computed as precisely as possible. 
This means that the final regression parameters – 𝛽0, 
 𝛽1 ,  𝛽2  in equation (11) – would each represent the 
mean values derived from the entire cycle of iterations. 
To test the model in each data-split iteration, the pre-
dicted IMT performance scores can be correlated with 
the observed IMT performance scores. A high correla-
tional value of 0.75 or more would indicate high accu-
racy in the training process and averaging the correla-
tional values over all iterations would provide the 
mean model accuracy over the entire training process. 
Ideally, a mean correlational value of at least 0.90 
would give future investigators the greatest confidence 
in the model’s internal validity and its subsequent abil-
ity to predict IMT performance accurately in the ab-
sence of IMT(s). 

6.3 Participant characteristics 

In addition to the two issues mentioned above, the 
third most important concern pertain to participant 
characteristics. Owing to the fact that motivation re-
search focuses largely on students in their adolescence 
and young adulthood, and that the association of VS-
PFC connectivity with intrinsic motivation was mainly 
found amongst them [9, 16, 20-22], we intend our re-
gression model to apply only to this population of 
youths. Apart from this, there is one more variable that 
we want future investigators to be explicitly aware of – 
and that is culture. As shown by Telzer et al. [20], a par-
ticipant’s cultural background has the potential to 
moderate the strength of the VS-PFC connectivity, with 
Chinese young adults (born and raised in China) 
demonstrating stronger, albeit non-significant, correla-
tion between VS-PFC connectivity and Go-No-Go task 
performance [r(14)= -0.43, p = 0.11] than White Amer-
ican young adults (born and raised in the USA) [r(15) = 
-0.16, p = 0.59]. The same East-West cultural differ-
ences have also been shown by Qu et al. [35] to affect 
brain-behavior correlations between PFC activations 
and risk-taking motivation. While Chinese young adults 
(born and raised in China) demonstrated significant 
positive correlations between activations in two PFC 
subregions (left dlPFC and right anterior insula) and 
risky exploration behaviors, White American young 
adults (born and raised in the USA) demonstrated non-
significant correlations (close to a flat line) between the 
same sets of variables. 

These findings are noteworthy because they suggest 
that individuals from cultures that place strong empha-
sis on intrinsic motivation for academic achievement 
and self-improvement, such as the Chinese culture, 
may activate brain regions that are functionally in-
volved in intrinsic motivation to a larger extent and in 
a more linear fashion than individuals from cultures 
that place weaker emphasis on intrinsic motivation. 
This also means that future investigators of intrinsic 
motivation should take note of the cultural background 
of their participants and ensure that each cultural 
group is represented equally in the overall sample. If 
the sample size is large enough, one can compare the 
correlations between IMT performance and VS-PFC 
connectivity between the cultural groups and establish 
a ML-based regression model – based on equation (11) 
– befitting of each culture. 

7. Limitations 

In addition to the technical considerations highlighted 
above, there are some key limitations of the proposed 
methodology that we need investigators in future stud-
ies to be aware of. First, for any future study to run 
smoothly, we deem it crucial that effective communica-
tion and collaboration exist between different re-
searchers with a diverse set of expertise. These experts 
could have been trained originally in biomedical engi-
neering, computer science, neuroscience, educational 
science, sociology, etc., and it is essential that the prin-
cipal investigator managing them plays an active guid-
ing role in fostering teamwork, charting out team-ori-
ented goals, facilitating interdisciplinary dialogues, and 
sharing knowledge – so that a sense of team identity 
and belonging is forged [36], Second, owing to the fact 
our methodology was originally designed with healthy, 
cognitively intact adolescents in mind, future studies 
focusing on adolescents with psychological disorders 
would need to recruit a separate sample to establish 
the regression parameters. Due to differences in sam-
ple characteristics, any regression parameters previ-
ously established using healthy adolescents cannot be 
applied unequivocally to another model involving non-
healthy adolescents with psychological problems. 
Third, we must state that because fMRI research is an 
expensive endeavor, since substantial funding is neces-
sary for compensating participants and purchasing 
equipment, we advise future investigators to conduct 
careful budgeting and planning. As training a reliable 
ML model would require a considerable number of par-
ticipants, as mentioned in the previous section, a sizea-
ble proportion of any research funding must be de-
voted to participant recruitment and compensation, 
and hence it is important for future investigators to 
plan their budget around this central fact. 

8. Conclusion 

In this article, we provided a short review of the most 
notable human neuroscience literature on intrinsic mo-
tivation and proposed a novel approach wherein VS-
PFC connectivity signals, derived from functional 
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magnetic resonance imaging (fMRI) data, can be used 
as predictors of intrinsic motivation through a machine 
learning (ML)-based linear regression model. By devel-
oping a robust linear regression model supported by 
ML techniques and applied to a substantial sample of 
students, this approach aims to facilitate rapid and pre-
cise predictions of intrinsic motivation levels without 
the need for repeated assessment of intrinsic motiva-
tion in follow-up studies. Our proposed method would 
greatly benefit longitudinal fMRI studies investigating 
developmental brain and behavioral changes in intrin-
sic motivation, as well as educational intervention pro-
grams seeking fast and accurate identification of stu-
dents with varying levels of intrinsic motivation.  
In addition, we want to state that our ideas do not have 
to be restricted to the investigation of intrinsic motiva-
tion alone. If there are other functional connectivity 
and behavioral variables that can predict another type 
of outcome variable, our ML-based regression model 
can be similarly applied using the same procedures 
outlined above. This means that our ideas can be recast 
in the form of a generic methodological framework that 
provides flexibility in determining the variables to suit 
the research questions at hand. For an example, we 
turn to the neuroscience of spatial navigation literature, 
which postulates that the functional connectivity be-
tween the PFC and the hippocampus (Hpc) plays a cru-
cial role in human navigation, in processes such as 
landmark-direction binding [37], perspective-switch-
ing [38], and cognitive mapping [39]. Thus, it would be 
interesting to investigate whether task-dependent 
PFC-Hpc connectivity can predict performance on a 
visuospatial task it is known to support (e.g., associa-
tive learning of landmark locations and turning direc-
tions, [37]) after controlling for a performance variable 
(e.g., number of wrong turns, [37] from an in-scanner 
virtual navigation task.  
Finally, we want to stress that the successful realization 
of our proposed ideas may very likely involve multidis-
ciplinary collaboration between neuroscientists and 
AI/data scientists. This endeavor will require a sub-
stantial amount of technical knowledge and expertise 
from both sides, making active communication and ef-
fective project management crucial. With the right co-
ordination of efforts, we believe that any technical 
problems that may arise during the research process 
can be overcome. Following this vein, we welcome all 
future investigators who are keen to apply our method-
ology to contact us for academic discussion and poten-
tial collaboration. On this positive note, we end this ar-
ticle, and hope that future investigators will build upon 
our ideas to further the frontiers of motivation re-
search.  
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