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1. Introduction

Neutrophils, key players of the innate immunity sys-
tem, serve as primary effectors of both acute infection
and sterile inflammation. Neutrophil extracellular
traps (NETs) are released by neutrophils as part of their
antimicrobial defense, helping to trap and eliminate
pathogenic microorganisms [1]. However, over the last
decade, NETs have emerged as a remarkable example
of how the innate immune system shapes cardiovascu-
lar disease (CVD) [2]. Initially described as DNA webs
that capture pathogens, NETs are now recognized as
complex structures enriched in histones, proteases,
and enzymes that extend far beyond antimicrobial de-
fense [1]. In cardiovascular pathologies, NETs function
as powerful amplifiers of vascular injury, thrombosis,
and maladaptive remodeling, while also actively partic-
ipating in inflammation processes associated with my-
ocardial infarction, atrial fibrillation, and myocarditis.
The increased understanding of NETs' roles in CVD
raises both excitement and concern: NETs represent
not only a novel mechanistic link between inflamma-
tion and cardiovascular pathology but also a potential
therapeutic target whose modulation could reshape
clinical outcomes.

2. NETs composition and formation

NETs are complex web-like DNA structures released by
neutrophils in response to a wide range of stimuli. The
expelled DNA, of either nuclear or mitochondrial origin,
is decorated with nuclear material - citrullinated and
hyperacetylated histones, and coated with antimicro-
bial granular proteins such as neutrophil elastase (NE),
myeloperoxidase (MPO), and cathepsin G, as well as cy-
tosolic components including cytokines and S100 pro-
teins. Importantly, the composition and architecture of
NETs vary depending on the stimulus and microenvi-
ronment.

Two main mechanisms of NET release have been de-
scribed. The predominant pathway in inflammatory
conditions is suicidal NETosis, in which neutrophils
undergo cell death following a sequence of

morphological changes: nuclear envelope breakdown,
chromatin decondensation, plasma membrane disrup-
tion, and eventual extrusion of DNA-based NETs into
the extracellular space [1, 3]. The process of suicidal
NETosis requires profound chromatin remodeling. A
central step involves histone citrullination by peptidyl
arginine deiminase 4 (PAD4), which neutralizes histone
charge and weakens DNA-histone interaction. In paral-
lel, NE cleaves histones, further promoting chromatin
decondensation. Ultimately, the destabilized chromatin
is expelled through rupture of the nuclear envelope,
giving rise to extracellular DNA webs densely loaded
with neutrophil effector proteins. Vital NETosis allows
neutrophils to remain viable while releasing portions
of nuclear or mitochondrial DNA, depending on the
stimulus [4, 5]. This process sustains antimicrobial de-
fense without immediate cell loss. The source of DNA
and the local microenvironment influence NET compo-
sition, introducing the concept of NET heterogeneity.
While the NET proteome appears relatively stable, the
abundance of its protein constituents can vary with the
stimulus [6]. Notably, when NETSs arise from mitochon-
drial DNA, their composition and function differ, as mi-
tochondria lack histones [7].

3. NETs as drivers of cardiovascular patholo-
gies

Recent evidence highlights the essential role of NETs in
cardiovascular disease. In acute coronary syndromes,
NETs promote disease progression through multiple
mechanisms, including serving as autoantigens, inter-
acting with diverse cell types, activating inflam-
masomes, and accelerating atherosclerosis [2, 8, 9].
Atherosclerotic plaques provide potent triggers for
NET formation, as components such as cholesterol
crystals, activated platelets, and dysfunctional endothe-
lial cells stimulate neutrophils to release NETs [8]. NETs
have been detected at the luminal side of plaques,
within the thrombus, and at the plaque-thrombus in-
terface [2]. Within plaques, NETs contribute to endo-
thelial dysfunction, lipid oxidation, and recruitment of
inflammatory cells. Their proteolytic and pro-oxidative
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components destabilize the fibrous cap, increasing sus-
ceptibility to rupture. Following plaque disruption,
NETs catalyse atherothrombosis by activating platelets,
enhancing thrombin generation, and providing a scaf-
fold for clot formation. NETs have been detected in
thrombotic lesions from human samples and experi-
mental models, highlighting their central role in patho-
logical clot formation [10-12]. Acting at the interface of
neutrophils, platelets, and coagulation pathways, often
termed immunothrombosis, NETs provide both struc-
tural and biochemical support for thrombus develop-
ment [10]. Their negatively charged DNA creates a pro-
coagulant surface, while NET-derived proteins directly
activate platelets and enhance both intrinsic and ex-
trinsic coagulation cascades. The web-like scaffold of
NETs facilitates the deposition of platelets, erythro-
cytes, fibrin, and von Willebrand factor, thereby pro-
moting thrombus stability. Additionally, NET-associ-
ated histones potentiate platelet aggregation and
thrombin generation through interactions with fibrino-
gen and TLR2/TLR4, further amplifying thrombosis
and impairing fibrinolysis [12]. NETs are consistently
detected in human thrombi and appear particularly
abundant in fresh, lytic coronary thrombi (10-30% of
thrombus mass), supporting their predominant role in
the early phases of atherothrombosis [11]. In coronary
artery thrombi from ST-segment elevation myocardial
infarction (STEMI) patients, NETSs cluster around eryth-
rocytes and associate with extracellular iron and eryth-
rocyte fragments, indicating that NETs contribute to
erythrocyte aggregation, damage, and amplification of
thrombosis during plaque-related coronary events. Be-
yond their contribution to thrombus formation, NETs
are implicated in acute coronary syndrome (ACS)-re-
lated injury. Activated neutrophils infiltrating necrotic
myocardium release NETs immediately after MI,
thereby exacerbating tissue damage by recruiting addi-
tional leukocytes and delaying the resolution of inflam-
mation. We and others found that plasma NET levels
are increased in patients with ACS [13, 14], and some
markers of NETs have been found in acute myocardial
infarction [15]. In STEMI patients, these markers were
further shown to correlate with infarct size and im-
paired left ventricular function [16]. The burden of cor-
onary NETs in patients with STEMI has been shown to
predict ST-segment resolution and infarct size [14], alt-
hough the association between NETs and major cardio-
vascular events is not clear. However, NETs from myo-
cardial tissue were recently found to contribute to car-
diac dysfunction and adverse outcomes in patients with
heart failure with dilated cardiomyopathy, potentially
through mitochondrial dysfunction of cardiomyocytes
[17]. The involvement of NETs in cardiac remodeling
and heart failure is also supported by studies demon-
strating that NET-associated proteins can sustain fibro-
blast activation, chronic inflammation, and adverse
ventricular remodeling [9, 18]. In animal models, neu-
trophil infiltration and NETosis markers were consist-
ently detected in failing hearts [9].
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4. Therapeutic strategies targeting NETs

Multiple experimental and clinical evidence identifying
NETs as key contributors to cardiovascular pathology -
accelerating atherosclerosis and ACS - places them as
both biomarkers of cardiovascular outcomes and
promising therapeutic targets. In this context, several
studies have explored genetic and pharmacological
strategies to inhibit NET formation or promote their
clearance in CVD. Inhibition of NET formation using
PAD4 inhibitors or DNase treatment reduced cardiac fi-
brosis and improved cardiac function in animal models
of heart failure [9]. The studies using PAD4 knockout
models showed that mice lacking PAD4 had signifi-
cantly smaller infarcts and better preserved left ven-
tricular function following ischemia-reperfusion injury
[19], or are protected from plaque erosion [20]. Admin-
istration of PAD4-specific inhibitors such as GSK484,
JBI-589, or Cl-amidine prevented the formation of NETs
in plaques, reduced the number of endothelial macro-
phages, decreased neutrophil recruitment to the vessel
wall, and reduced levels of inflammatory mediators, ul-
timately significantly reducing atherosclerotic plaque
formation and thrombosis and decreasing the risk of
myocardial infarction [20-23].

Moreover, DNase I treatment decreased the number of
NETs and of inflammatory cells, and was effective in re-
ducing the size of atherosclerotic plaques in mice [24].
In addition, administration of DNase I in a PAD4 knock-
out mouse model resulted in survival of endothelial
cells while limiting the recruitment of neutrophils [20].
However, it remains unclear whether degradation of
NETs by DNase I sufficiently neutralizes histones with
procoagulant activity or instead facilitates their re-
lease, potentially increasing thrombotic risk [25]. Fur-
ther investigation is required to clarify these effects.

5. Conclusion: A double-edged sword

Targeting NETs in cardiovascular disease offers sub-
stantial translational potential, as both preclinical and
early clinical studies indicate that limiting NET for-
mation or promoting their clearance can reduce throm-
bosis, myocardial injury, and maladaptive remodeling.
However, NETs are not universally harmful; they serve
as an essential arm of innate immunity, capturing and
neutralizing pathogens. Broad or prolonged suppres-
sion of NET-osis could therefore weaken host defense
and increase infection risk. The central challenge is to
design strategies that selectively attenuate the patho-
logical contributions of NETSs to vascular inflammation,
thrombosis, and tissue remodeling, while preserving
their protective antimicrobial functions - a balance cru-
cial for safe and effective clinical translation.
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