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1. Introduction  

Neutrophils, key players of the innate immunity sys-
tem, serve as primary effectors of both acute infection 
and sterile inflammation. Neutrophil extracellular 
traps (NETs) are released by neutrophils as part of their 
antimicrobial defense, helping to trap and eliminate 
pathogenic microorganisms [1]. However, over the last 
decade, NETs have emerged as a remarkable example 
of how the innate immune system shapes cardiovascu-
lar disease (CVD) [2]. Initially described as DNA webs 
that capture pathogens, NETs are now recognized as 
complex structures enriched in histones, proteases, 
and enzymes that extend far beyond antimicrobial de-
fense [1]. In cardiovascular pathologies, NETs function 
as powerful amplifiers of vascular injury, thrombosis, 
and maladaptive remodeling, while also actively partic-
ipating in inflammation processes associated with my-
ocardial infarction, atrial fibrillation, and myocarditis. 
The increased understanding of NETs' roles in CVD 
raises both excitement and concern: NETs represent 
not only a novel mechanistic link between inflamma-
tion and cardiovascular pathology but also a potential 
therapeutic target whose modulation could reshape 
clinical outcomes. 

2. NETs composition and formation 

NETs are complex web-like DNA structures released by 
neutrophils in response to a wide range of stimuli. The 
expelled DNA, of either nuclear or mitochondrial origin, 
is decorated with nuclear material – citrullinated and 
hyperacetylated histones, and coated with antimicro-
bial granular proteins such as neutrophil elastase (NE), 
myeloperoxidase (MPO), and cathepsin G, as well as cy-
tosolic components including cytokines and S100 pro-
teins. Importantly, the composition and architecture of 
NETs vary depending on the stimulus and microenvi-
ronment. 
Two main mechanisms of NET release have been de-
scribed. The predominant pathway in inflammatory 
conditions is suicidal NETosis, in which neutrophils 
undergo cell death following a sequence of 

morphological changes: nuclear envelope breakdown, 
chromatin decondensation, plasma membrane disrup-
tion, and eventual extrusion of DNA-based NETs into 
the extracellular space [1, 3]. The process of suicidal 
NETosis requires profound chromatin remodeling. A 
central step involves histone citrullination by peptidyl 
arginine deiminase 4 (PAD4), which neutralizes histone 
charge and weakens DNA–histone interaction. In paral-
lel, NE cleaves histones, further promoting chromatin 
decondensation. Ultimately, the destabilized chromatin 
is expelled through rupture of the nuclear envelope, 
giving rise to extracellular DNA webs densely loaded 
with neutrophil effector proteins. Vital NETosis allows 
neutrophils to remain viable while releasing portions 
of nuclear or mitochondrial DNA, depending on the 
stimulus [4, 5]. This process sustains antimicrobial de-
fense without immediate cell loss. The source of DNA 
and the local microenvironment influence NET compo-
sition, introducing the concept of NET heterogeneity. 
While the NET proteome appears relatively stable, the 
abundance of its protein constituents can vary with the 
stimulus [6]. Notably, when NETs arise from mitochon-
drial DNA, their composition and function differ, as mi-
tochondria lack histones [7]. 

3. NETs as drivers of cardiovascular patholo-
gies 

Recent evidence highlights the essential role of NETs in 
cardiovascular disease. In acute coronary syndromes, 
NETs promote disease progression through multiple 
mechanisms, including serving as autoantigens, inter-
acting with diverse cell types, activating inflam-
masomes, and accelerating atherosclerosis [2, 8, 9]. 
Atherosclerotic plaques provide potent triggers for 
NET formation, as components such as cholesterol 
crystals, activated platelets, and dysfunctional endothe-
lial cells stimulate neutrophils to release NETs [8]. NETs 
have been detected at the luminal side of plaques, 
within the thrombus, and at the plaque–thrombus in-
terface [2]. Within plaques, NETs contribute to endo-
thelial dysfunction, lipid oxidation, and recruitment of 
inflammatory cells. Their proteolytic and pro-oxidative 
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components destabilize the fibrous cap, increasing sus-
ceptibility to rupture. Following plaque disruption, 
NETs catalyse atherothrombosis by activating platelets, 
enhancing thrombin generation, and providing a scaf-
fold for clot formation. NETs have been detected in 
thrombotic lesions from human samples and experi-
mental models, highlighting their central role in patho-
logical clot formation [10-12]. Acting at the interface of 
neutrophils, platelets, and coagulation pathways, often 
termed immunothrombosis, NETs provide both struc-
tural and biochemical support for thrombus develop-
ment [10]. Their negatively charged DNA creates a pro-
coagulant surface, while NET-derived proteins directly 
activate platelets and enhance both intrinsic and ex-
trinsic coagulation cascades. The web-like scaffold of 
NETs facilitates the deposition of platelets, erythro-
cytes, fibrin, and von Willebrand factor, thereby pro-
moting thrombus stability. Additionally, NET-associ-
ated histones potentiate platelet aggregation and 
thrombin generation through interactions with fibrino-
gen and TLR2/TLR4, further amplifying thrombosis 
and impairing fibrinolysis [12]. NETs are consistently 
detected in human thrombi and appear particularly 
abundant in fresh, lytic coronary thrombi (10–30% of 
thrombus mass), supporting their predominant role in 
the early phases of atherothrombosis [11]. In coronary 
artery thrombi from ST-segment elevation myocardial 
infarction (STEMI) patients, NETs cluster around eryth-
rocytes and associate with extracellular iron and eryth-
rocyte fragments, indicating that NETs contribute to 
erythrocyte aggregation, damage, and amplification of 
thrombosis during plaque-related coronary events. Be-
yond their contribution to thrombus formation, NETs 
are implicated in acute coronary syndrome (ACS)–re-
lated injury. Activated neutrophils infiltrating necrotic 
myocardium release NETs immediately after MI, 
thereby exacerbating tissue damage by recruiting addi-
tional leukocytes and delaying the resolution of inflam-
mation. We and others found that plasma NET levels 
are increased in patients with ACS [13, 14], and some 
markers of NETs have been found in acute myocardial 
infarction [15]. In STEMI patients, these markers were 
further shown to correlate with infarct size and im-
paired left ventricular function [16]. The burden of cor-
onary NETs  in patients with STEMI has been shown to 
predict ST-segment resolution and infarct size [14], alt-
hough the association between NETs and major cardio-
vascular events is not clear. However, NETs from myo-
cardial tissue were recently found to contribute to car-
diac dysfunction and adverse outcomes in patients with 
heart failure with dilated cardiomyopathy, potentially 
through mitochondrial dysfunction of cardiomyocytes 
[17]. The involvement of NETs in cardiac remodeling 
and heart failure is also supported by studies demon-
strating that NET-associated proteins can sustain fibro-
blast activation, chronic inflammation, and adverse 
ventricular remodeling [9, 18]. In animal models, neu-
trophil infiltration and NETosis markers were consist-
ently detected in failing hearts [9].  

4. Therapeutic strategies targeting NETs 

Multiple experimental and clinical evidence identifying 
NETs as key contributors to cardiovascular pathology - 
accelerating atherosclerosis and ACS - places them as 
both biomarkers of cardiovascular outcomes and 
promising therapeutic targets. In this context, several 
studies have explored genetic and pharmacological 
strategies to inhibit NET formation or promote their 
clearance in CVD. Inhibition of NET formation using 
PAD4 inhibitors or DNase treatment reduced cardiac fi-
brosis and improved cardiac function in animal models 
of heart failure [9]. The studies using PAD4 knockout 
models showed that mice lacking PAD4 had signifi-
cantly smaller infarcts and better preserved left ven-
tricular function following ischemia-reperfusion injury 
[19], or are protected from plaque erosion [20]. Admin-
istration of PAD4-specific inhibitors such as GSK484, 
JBI-589, or Cl-amidine prevented the formation of NETs 
in plaques, reduced the number of endothelial macro-
phages, decreased neutrophil recruitment to the vessel 
wall, and reduced levels of inflammatory mediators, ul-
timately significantly reducing atherosclerotic plaque 
formation and thrombosis and decreasing the risk of 
myocardial infarction [20-23]. 
Moreover, DNase I treatment decreased the number of 
NETs and of inflammatory cells, and was effective in re-
ducing the size of atherosclerotic plaques in mice [24]. 
In addition, administration of DNase I in a PAD4 knock-
out mouse model resulted in survival of endothelial 
cells while limiting the recruitment of neutrophils [20]. 
However, it remains unclear whether degradation of 
NETs by DNase I sufficiently neutralizes histones with 
procoagulant activity or instead facilitates their re-
lease, potentially increasing thrombotic risk [25]. Fur-
ther investigation is required to clarify these effects. 

5. Conclusion: A double-edged sword 

Targeting NETs in cardiovascular disease offers sub-
stantial translational potential, as both preclinical and 
early clinical studies indicate that limiting NET for-
mation or promoting their clearance can reduce throm-
bosis, myocardial injury, and maladaptive remodeling. 
However, NETs are not universally harmful; they serve 
as an essential arm of innate immunity, capturing and 
neutralizing pathogens. Broad or prolonged suppres-
sion of NET-osis could therefore weaken host defense 
and increase infection risk. The central challenge is to 
design strategies that selectively attenuate the patho-
logical contributions of NETs to vascular inflammation, 
thrombosis, and tissue remodeling, while preserving 
their protective antimicrobial functions - a balance cru-
cial for safe and effective clinical translation. 
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