

Editorial Open Access

## Nanotechnology revolution in diagnosing and treating urinary tract infections

Suresh Babu Naidu Krishna\*, Vasanthrie Naidoo

Faculty of Health Sciences, Durban University of Technology, Durban-4000, South Africa \* Correspondence: Suresh Babu Naidu Krishna. email: sureshk@dut.ac.za

Received: August 22, 2025; Accepted: August 22, 2025; Published: August 25, 2025

Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, affecting millions annually and imposing significant healthcare costs. Rising antibiotic resistance among uropathogens coupled with the limitations of culture-based diagnostics and systemic therapies demands innovative approaches. Nanotechnology offers transformative potential, enabling rapid, point of care (POC) detection and targeted antimicrobial interventions that promise to outperform evolving resistance mechanisms.

Advances in nanoscale biosensors have paved the way for the ultrasensitive, label-free detection of urinary pathogens and biomarkers. By leveraging functionalized nanoparticles, such as gold nanorods and quantum dots, researchers have achieved real-time monitoring of bacterial metabolites and adhesion molecules directly in urine samples. These platforms reduce the diagnostic turnaround from days to minutes and circumvent the need for centralised laboratories, making them ideally suited for community and resource-limited settings

On the therapeutic front, nanocarriers and nanoparticle-based antimicrobials offer precision delivery and enhanced efficacy against biofilm-embedded uropathogens. Liposomal formulations, polymeric nanoparticles, and metallic nanostructures (e.g. silver and zinc oxide) have demonstrated potent bactericidal activity, while minimising off-target effects. Stimuli-responsive constructs triggered by pH shifts or enzymatic activity in the urinary tract enable controlled drug release at the site of infection, reducing systemic toxicity and the selective pressure that drives resistance.

Integrative strategies combining diagnostics with therapeutics, often termed "theranostics," are emerging as powerful paradigms for UTI management. Nanoparticle platforms can both identify pathogens and load and deliver tailored antimicrobial payloads in a single step. Coupling these systems with microfluidic "lab-on-achip" devices and machine-learning algorithms enhances data interpretation, supports personalised treatment regimens, and accelerates adaptive responses to treatment failures.

The future of UTI research lies in a multidisciplinary collaboration between bridging materials science, microbiology, bioengineering, and clinical medicine. Computational modelling of nanoparticle cell interactions provides mechanistic insights that guide rational design, whereas high-throughput screening of nanomaterials accelerates the discovery of novel antimicrobial agents. As open-access platforms dedicated to cellular and molecular innovation, Advances in Cells invite contributions that push the boundaries of nanodiagnostics, nanotherapeutics, and integrated approaches to combating tract infections.

We must embrace complexity, leverage model-based hypotheses, and foster multi-disciplinary approach to transform the diagnosis and treatment of UTIs. By harnessing the nanotechnology revolution, we can envision a future in which rapid, point-of-care tests and precision antimicrobials have become standard tools to reduce recurrence, curb resistance, and improve patient outcomes worldwide.

## Acknowledgements

The author gratefully acknowledges the research fellowship support from the Durban University of Technology, South Africa.

This is an open access article under the terms of the <u>Creative Commons Attribution License</u>, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited.

**Adv. Cell** 2025; 1: 002 doi:10.70462/cells.2025.1.002 © 2025 The Author(s)